Imaging in Oncology pp 67-92 | Cite as
PET Imaging of Brain Tumors
- 3 Citations
- 1.4k Downloads
The incidence of primary brain tumors is ~ 11:100,000 of the population. In the year 2006, ~ 18,820 new cases of brain and other nervous system tumors were diagnosed in the United States [1] and these tumors were the cause of death in ~ 12,820 patients. Despite advances in diagnosis and therapy, the prognosis for patients with primary brain tumors remains very poor; age-adjusted five-year survival is 30.8 percent. Primary brain tumor is the most prevalent solid tumor in children, and patients 19 years old or younger have a five-year survival of 65 percent. Patients aged 44 or younger have a five-year survival of 58.7 percent. In the elderly, prognosis is extremely poor with a five-year survival of less than 6.5 percent in patients aged 65 and older [1].
The epidemiology of primary brain tumors is extremely complex and includes lesions with both benign and malignant histologies. Between 1985 and 1992, over 60,000 patients diagnosed with primary brain tumors were reported to the National Cancer Data Base (NCDB) [2], and in this group the most frequent tumors were glioblastoma multiforme (GBM) and astrocytoma. The World Health Organization (WHO) has established a four-level classification system (Grade I to IV) with Grade I being most benign, and Grade IV most malignant. The most malignant tumors - astrocytomas and GBM (Grade III to IV) - had overall 30 percent and two percent five-year survival in the NCDB series [2].
Preview
Unable to display preview. Download preview PDF.
References
- 1.Jemal A, Siegel R, Ward E, Murray T, Xu J, Smigal C, Thun MJ. Cancer statistics, 2006. CA Cancer J Clin 2006;56(2):106–130.PubMedCrossRefGoogle Scholar
- 2.Surawicz TS, Davis F, Freels S, Laws ER, Menck HR, Laws ER Jr. Brain tumor survival: results from the National Cancer Data Base. J Neurooncol 1998;40(2):151–160.PubMedCrossRefGoogle Scholar
- 3.Alavi A, Mavi A, Basu S, Fischman AJ. Is PET-CT the only option? Eur J Nucl Med (In Press)Google Scholar
- 4.Herscovitch P, Markham J, Raichle ME. Brain blood flow measured with intravenous H2 15. I. Theory and error analysis. J Nucl Med 1983;24(9):782–789PubMedGoogle Scholar
- 5.Raichle ME, Martin WR, Herscovitch P, Mintun MA, Markham. J. Brain blood flow measured with intravenous H2 15O. II. Implementation and validation. J Nucl Med 1983;24(9): 790–798PubMedGoogle Scholar
- 6.Mintun MA, Raichle ME, Martin WR, Herscovitch P. Brain oxygen utilization measured with O-15 radiotracers and positron emission tomography. J Nucl Med 1984;25(2):177–187.PubMedGoogle Scholar
- 7.Jager PL, Vaalburg W, Pruim J, de Vries EG, Langen KJ, Piers DA Radiolabeled amino acids: basic aspects and clinical applications in oncology. J Nucl Med 2001;42(3):432–445.PubMedGoogle Scholar
- 8.Derlon JM, Chapon F, Noel MH, Khouri S, Benali K, Petit-Taboue MC Houtteville JP, Chajari MH, Bouvard G. Non-invasive grading of oligodendrogliomas: correlation between in vivo metabolic pattern and histopathology. Eur J Nucl Med 2000;27(7):778–787.PubMedCrossRefGoogle Scholar
- 9.Ribom D, Eriksson A, Hartman M, Engler H, Nilsson A, Langstrom B, Bolander H Bergstrom M, Smits A. Positron emission tomography 11C-methionine and survival in patients with low-grade gliomas. Cancer 2001;92(6):1541–1549.PubMedCrossRefGoogle Scholar
- 10.Chung JK, Kim K, Kim Sk SK, Lee J, Paek S, Yeo S, Jeong M, Lee S, Jung W, Lee C Usefulness of 11C-methionine PET in the evaluation of brain lesions that are hypo- or isometabolic on (18) F-FDG PET. Eur J Nucl Med 2002;29(2):176–182.CrossRefGoogle Scholar
- 11.Eary JF, Mankoff DA, Spence AM, Berger MS, Olshen A, Link JM, O’Sullivan F Krohn KA. 2-[C-11]thymidine imaging of malignant brain tumors. Cancer Res 1999;59(3):615–621.PubMedGoogle Scholar
- 12.Reinhardt MJ, Kubota K, Yamada S, Iwata R, Yaegashi H. Assessment of cancer recurrence in residual tumors after fractionated radiotherapy: a comparison of fluorodeoxyglucose, L-methionine and thymidine. J Nucl Med 1997;38(2):280–287.PubMedGoogle Scholar
- 13.Chen W, Silverman DH, Delaloye S, Czernin J, Kamdar N, Pope W, Satyamurthy N, Schiepers C, Cloughesy T. 18F-FDOPA PET imaging of brain tumors: comparison study with 18F-FDG PET and evaluation of diagnostic accuracy. J Nucl Med 2006;47(6):904–911.PubMedGoogle Scholar
- 14.Popperl G, Gotz C, Rachinger W, Gildehaus FJ, Tonn JC, Tatsch K. Value of O-(2-[18F]fluoroethyl)- L-tyrosine PET for the diagnosis of recurrent glioma. Eur J Nucl Med Mol Imaging 2004; 31(11):1464–1470.PubMedCrossRefGoogle Scholar
- 15.Shields AF, Grierson JR, Dohmen BM, Machulla HJ, Stayanoff JC Lawhorn-Crews JM, Obradovich JE, Muzik O, Mangner TJ Imaging proliferation in vivo with [F-18]FLT and positron emission tomography. Nat Med 1998;4(11):1334–1336.PubMedCrossRefGoogle Scholar
- 16.Skalsk J, Wahl RL, Meyer CR. Comparison of Mutual Information-Based Warping Accuracy for Fusing Body CT and PET by 2 Methods: CT Mapped onto PET Emission Scan Versus CT Mapped onto PET Transmission Scan. Journal of Nuclear Medicine 2002; 43(9): 1184–1187.Google Scholar
- 17.Di Chiro G. Positron emission tomography using [18F] fluorodeoxyglucose in brain tumors. A powerful diagnostic and prognostic tool. Invest Radiol 1987;22(5):360–371PubMedCrossRefGoogle Scholar
- 18.Patronas NJ, Brooks RA, DeLaPaz RL, Smith BH, Kornblith PL, Di Chiro G Glycolytic rate (PET) and contrast enhancement (CT) in human cerebral gliomas. AJNR Am J Neuroradiol 1983;4(3):533–535.PubMedGoogle Scholar
- 19.Delbeke D, Meyerowitz C, Lapidus RL, Maciunas RJ, Jennings MT, Moots PL Kessler RM. Optimal cutoff levels of F-18 fluorodeoxyglucose uptake in the differentiation of low-grade from high-grade brain tumors with PET. Radiology 1995;195(1):47–52.PubMedGoogle Scholar
- 20.Paulus W, Peiffer J. Intratumoral histologic heterogeneity of gliomas. A quantitative study. Cancer 1989;64(2):442–447PubMedCrossRefGoogle Scholar
- 21.Hanson MW, Glantz MJ, Hoffman JM, Friedman AH, Burger PC, Schold SC Coleman RE FDG-PET in the selection of brain lesions for biopsy. J Comput Assist Tomogr 1991;15(5):796–801.PubMedCrossRefGoogle Scholar
- 22.Pirotte B, Goldman S, Brucher JM, Zomosa G, Baleriaux D, Brotchi J Levivier M. PET in stereotactic conditions increases the diagnostic yield of brain biopsy. Stereotact Funct Neurosurg 1994;63(1–4):144–149.PubMedCrossRefGoogle Scholar
- 23.Pirotte B, Goldman S, David P, Wikler D, Damhaut P, Vandesteene A, Salmon L Brotchi J, Levivier M. Stereotactic brain biopsy guided by positron emission tomography (PET) with [F-18]fluorodeoxyglucose and [C-11]methionine. Acta Neurochir Suppl (1997) 68:133–138PubMedGoogle Scholar
- 24.Pirotte B, Goldman S, David P, Wikler D, Damhaut P, Vandesteene A, Salmon L Brotchi J, Levivier M Stereotactic brain biopsy guided by positron emission tomography (PET) with [F-18]fluorodeoxyglucose and [C-11]methionine. Acta Neurochir Suppl 1997;68:133–138.PubMedGoogle Scholar
- 25.Alavi JB, Alavi A, Chawluk J, Kushner M, Powe J, Hickey W, Reivich M Positron emission tomography in patients with glioma. A predictor of prognosis. Cancer 1988;62(6):1074–1078PubMedCrossRefGoogle Scholar
- 26.Patronas NJ, Di Chiro G, Kufta C, Bairamian D, Kornblith PL, Simon R Larson SM Prediction of survival in glioma patients by means of positron emission tomography. J Neurosurg 1985;62(6):816–822.PubMedCrossRefGoogle Scholar
- 27.De Witte O, Levivier M, Violon P, Salmon I, Damhaut P, Wikler D Hildebrand J, Brotchi J, Goldman S, Wikler D Jr. Prognostic value positron emission tomography with [18F]fluoro-2- deoxy-D-glucose in the low-grade glioma. Neurosurgery 1996;39(3):470–6; discussion 476–477PubMedCrossRefGoogle Scholar
- 28.Francavilla TL, Miletich RS, Di Chiro G, Patronas NJ, Rizzoli HV, Wright DC. Positron emission tomography in the detection of malignant degeneration of low-grade gliomas. Neurosurgery (1989 Jan) 24(1):1–5PubMedCrossRefGoogle Scholar
- 29.Schifter T, Hoffman JM, Hanson MW, Boyko OB, Beam C, Paine S, Schold SC Burger PC, Coleman RE. Serial FDG-PET studies in the prediction of survival in patients with primary brain tumors. Comput Assist Tomogr 1993; 17(4):509–561.Google Scholar
- 30.Hanson MW, Hoffman JM, Glantz MJ, et al. FDG PET in the early postoperative evaluation of patients with brain tumor. 1990;31:799p.Google Scholar
- 31.Glantz MJ, Hoffman JM, Coleman RE, Friedman AH, Hanson MW, Burger PC Herndon JE, Meisler WJ, Schold SC, Herndon JE, Schold SC. Identification of early recurrence of primary central nervous system tumors by [18F]fluorodeoxyglucose positron emission tomography. Ann Neurol 1991;29(4):347–355.PubMedCrossRefGoogle Scholar
- 32.Di Chiro G, Oldfield E, Wright DC, De Michele D, Katz DA, Patronas NJ Doppman JL, Larson SM, Ito M, Kufta CV. Cerebral necrosis after radiotherapy and/or intraarterial chemotherapy for brain tumors: PET and neuropathologic studies. AJR Am J Roentgenol 1988;150(1):189–197.PubMedGoogle Scholar
- 33.Barker FG, Chang SM, Valk PE, Pounds TR, Prados MD, Barker FG. 18-Fluorodeoxyglucose uptake and survival of patients with suspected recurrent malignant glioma. Cancer 1997;79(1):115–126.PubMedCrossRefGoogle Scholar
- 34.Chao ST, Suh JH, Raja S, Lee SY, Barnett G. The sensitivity and specificity of FDG PET in distinguishing recurrent brain tumor from radionecrosis in patients treated with stereotactic radiosurgery. Int J Cancer 2001;96(3):191–197.PubMedCrossRefGoogle Scholar
- 35.Ricci PE, Karis JP, Heiserman JE, Fram EK, Bice AN, Drayer BP Differentiating recurrent tumor from radiation necrosis: time for re- evaluation of positron emission tomography? AJNR Am J Neuroradiol 1998;19(3):407–413.PubMedGoogle Scholar
- 36.Hustinx R, Pourdehnad M, Kaschten B, Alavi A. PET imaging for differentiating recurrent brain tumor from radiation necrosis. Radiol Clin North Am 2005;43(1):35–47.PubMedCrossRefGoogle Scholar
- 37.Larcos G, Maisey MN. FDG-PET screening for cerebral metastases in patients with suspected malignancy. Nucl Med Commun 1996;17(3):197–198.PubMedCrossRefGoogle Scholar
- 38.Hoffman JM, Waskin HA, Schifter T, Hanson MW, Gray L, Rosenfeld S Coleman RE. FDG-PET in differentiating lymphoma from nonmalignant central nervous system lesions in patients with AIDS. J Nucl Med 1993;34(4):567–575.PubMedGoogle Scholar
- 39.Heald AE, Hoffman JM, Bartlett JA, Waskin HA Differentiation of central nervous system lesions in AIDS patients using positron emission tomography (PET). Int J STD AIDS 1996;7(5):337–346.PubMedCrossRefGoogle Scholar
- 40.Roelcke U, Leenders KL. Positron emission tomography in patients with primary CNS lymphomas. J Neurooncol 1999;43(3):231–236.PubMedCrossRefGoogle Scholar
- 41.Astner ST, Pihusch R, Nieder C, Rachinger W, Lohner H, Tonn JC, Molls M Grosu AL. Extensive local and systemic therapy in extraneural metastasized glioblastoma multiforme. Anticancer Res 2006; 26(6C):4917–4920PubMedGoogle Scholar
- 42.Wong TZ, van der Westuizen GJ, Coleman RE. Positron emission tomography imaging of brain tumors. Neuroimag Clin North Am 2002;12:615–626.CrossRefGoogle Scholar
- 43.Jager PL, Vaalburg W, Pruim J, de Vries EG, Langen KJ, Piers DA. Radiolabeled amino acids: basic aspects and clinical applications in oncology. J Nucl Med 2001;42(3):432–445.PubMedGoogle Scholar
- 44.Pruim J, Willemsen AT, Molenaar WM, van Waarde A, Paans AM, Heesters MA Go KG, Visser GM, Franssen EJ, Vaalburg W. Brain tumors: L-[1-C-11]tyrosine PET for visualization and quantification of protein synthesis rate. Radiology 1995;197(1):221–226.PubMedGoogle Scholar
- 45.Wienhard K, Herholz K, Coenen HH, Rudolf J, Kling P, Stocklin G, Heiss WD Increased amino acid transport into brain tumors measured by PET of L- (2-18F) fluorotyrosine. J Nucl Med 1991;32(7):1338–1346.PubMedGoogle Scholar
- 46.Weckesser M, Langen KJ, Rickert CH, Kloska S, Straeter R, Hamacher K Kurlemann G, Wassmann H, Coenen HH, Schober O. O-(2-[18F]fluorethyl)-L-tyrosine PET in the clinical evaluation of primary brain tumours. Eur J Nucl Med Mol Imaging 2005;32(4):422–429.PubMedCrossRefGoogle Scholar
- 47.Conti PS. Introduction to imaging brain tumor metabolism with positron emission tomography (PET). Cancer Invest 1995;13(2):244–259.PubMedCrossRefGoogle Scholar
- 48.Ericson K, Lilja A, Bergstrom M, Collins VP, Eriksson L, Ehrin E von Holst H, Lundqvist H, Langsrom B B, Mosskin M Positron emission tomography with ([11C]methyl)-L-methionine, [11C] D- glucose, and [68Ga] EDTA in supratentorial tumors. J Comput Assist Tomogr 1985;9(4):683–689.PubMedCrossRefGoogle Scholar
- 49.Chung JK, Kim YK, Kim SK, Lee YJ, Paek S, Yeo JS, Jeong JM, Lee DS, Jung HW Lee MC Usefulness of 11C-methionine PET in the evaluation of brain lesions that are hypo- or isometabolic on 18F-FDG PET. Eur J Nucl Med Mol Imaging 2002;29(2):176–182.PubMedCrossRefGoogle Scholar
- 50.Pirotte B, Goldman S, David P, Wikler D, Damhaut P, Vandesteene A, Salmon L Brotchi J, Levivier M. Stereotactic brain biopsy guided by positron emission tomography (PET) with [F-18]fluorodeoxyglucose and [C-11]methionine. Acta Neurochir Suppl 1997;68:133–138.PubMedGoogle Scholar
- 51.Nariai T, Tanaka Y, Wakimoto H, Aoyagi M, Tamaki M, Ishiwata K, Senda M Ishii K, Hirakawa K, Ohno K. Usefulness of L-[methyl-11C] methionine-positron emission tomography as a biological monitoring tool in the treatment of glioma. J Neurosur 2005;103(3): 498–507.CrossRefGoogle Scholar
- 52.Pirotte B, Goldman S, Massager N, David P, Wikler D, Lipszyc M, Salmon I Brotchi J, Levivier M. Combined use of 18F-fluorodeoxyglucose and 11C-methionine in 45 positron emission tomography-guided stereotactic brain biopsies. J Neurosurg 2004;101(3):476–483.PubMedCrossRefGoogle Scholar
- 53.Kim S, Chung JK, Im SH, Jeong JM, Lee DS, Kim DG, Jung HW, Lee MC. 11C-methionine PET as a prognostic marker in patients with glioma: comparison with 18F-FDG PET. Eur J Nucl Med Mol Imaging 2005;32(1):52–50.PubMedCrossRefGoogle Scholar
- 54.Tsuyuguchi N, Sunada I, Iwai Y, Yamanaka K, Tanaka K, Takami T, Otsuka Y Sakamoto S, Ohata K, Goto T, Hara M. Methionine positron emission tomography of recurrent metastatic brain tumor and radiation necrosis after stereotactic radiosurgery: is a differential diagnosis possible? J Neurosurg 2003;98(5):1056–1064.PubMedCrossRefGoogle Scholar
- 55.Van Laere K, Ceyssens S, Van Calenbergh F, de Groot T, Menten J, Flamen P Bormans G, Mortelmans L. Direct comparison of 18F-FDG and 11C-methionine PET in suspected recurrence of glioma: sensitivity, inter-observer variability and prognostic value. Eur J Nucl Med Mol Imaging 2005;32(1):39–51.PubMedCrossRefGoogle Scholar
- 56.Weckesser M, Langen KJ, Rickert CH, Kloska S, Straeter R, Hamacher K Kurlemann G, Wassmann H, Coenen HH, Schober O O-(2-[18F]fluorethyl)-L-tyrosine PET in the clinical evaluation of primary brain tumours. Eur J Nucl Med Mol Imaging 2005;32(4):422–429.PubMedCrossRefGoogle Scholar
- 57.Fischman AJ. Role of [18F] DOPA PET imaging in assessing movement disorders. Radio Clin North Amer 2005;43: 93–106.CrossRefGoogle Scholar
- 58.Eary JF, Mankoff DA, Spence AM, Berger MS, Olshen A, Link JM, O’Sullivan F Krohn KA 2-[C-11]thymidine imaging of malignant brain tumors. Cancer Res 1999;59(3):615–621.PubMedGoogle Scholar
- 59.Chen W, Cloughesy T, Kamdar N, Satyamurthy N, Bergsneider M, Liau L Mischel P, Czernin J, Phelps ME, Silverman DH Imaging proliferation in brain tumors with 18F-FLT PET: comparison with 18F-FDG. J Nucl Med 2005;46(6):945–952.PubMedGoogle Scholar
- 60.Yamamoto Y, Wong TZ, Turkington TG, Hawk TC, Reardon DA, Coleman RE 3′-Deoxy-3′-[F-18]fluorothymidine positron emission tomography in patients with recurrent glioblastoma multiforme: comparison with Gd- DTPA enhanced magnetic resonance imaging. Mol Imaging Biol 2006;8(6):340–347.PubMedCrossRefGoogle Scholar
- 61.Muzi M, Spence AM, O’Sullivan F, Mankoff DA, Wells JM, Grierson JR, Link JM Krohn KA. Kinetic analysis of 3′-deoxy-3′-18F-fluorothymidine in patients with gliomas. J Nucl Med 2006;47(10):1612–1621.PubMedGoogle Scholar
- 62.Hara T, Kosaka N, Shinoura N, Kondo T. PET imaging of brain tumor with [methyl-11C]choline. J Nucl Med 1997;38(6):842–847.PubMedGoogle Scholar
- 63.DeGrado TR, Baldwin SW, Wang S, Orr MD, Liao RP, Friedman HS, Reiman R Price DT, Coleman RE. Synthesis and evaluation of 18F-labeled choline analogs as oncologic PET tracers. J Nucl Med 2001;42(12):1805–1814.PubMedGoogle Scholar
- 64.Hara T, Kondo T, Hara T, Kosaka N. Use of 18F-choline and 11C-choline as contrast agents in positron emission tomography imaging-guided stereotactic biopsy sampling of gliomas. J Neurosurg 2003; 99(3):474–479.PubMedCrossRefGoogle Scholar
- 65.Liu RS, Chang CP, Chu LS, Chu YK, Hsieh HJ, Chang CW, Yang BH, Yen SH Huang MC, Liao SQ, Yeh SH. PET imaging of brain astrocytoma with 1–11C-acetate. Eur J Nucl Med Mol Imaging 2006;33(4):420–427.PubMedCrossRefGoogle Scholar
- 66.Dubois L, Landuyt W, Haustermans K, Dupont P, Bormans G, Vermaelen P Flamen P, Verbeken E, Mortelmans L, Evaluation of hypoxia in an experimental rat tumour model by 18F fluoromisonidazole PET and immunohistochemistry. Br J Cancer 2004;91(11):1947–1954.PubMedCrossRefGoogle Scholar
- 67.Reischl G, Ehrlichmann W, Bieg C, Solbach C, Kumar P, Wiebe LI, Machulla HJ. Preparation of the hypoxia imaging PET tracer [18F] FAZA: reaction parameters and automation. Appl Radiat Isot 2005;62(6):897–901.PubMedCrossRefGoogle Scholar
- 68.Bruehlmeier M, Roelcke U, Schubiger PA, Ametamey SM. Assessment of hypoxia and perfusion in human brain tumors using PET with 18F-fluoromisonidazole and 15O-H2O. J Nucl Med 2004;45(11):1851–1859.PubMedGoogle Scholar
- 69.Cher LM, Murone C, Lawrentschuk N, Ramdave S, Papenfuss A, Hannah A O’Keefe GJ, Sachinidis JI, Berlangieri SU, Fabinyi G, Scott AM. Correlation of hypoxic cell fraction and angiogenesis with glucose metabolic rate in gliomas using 18F-fluoromisonidazole, 18F-FDG PET, and immunohistochemical studies. J Nucl Med 2006;47(3):410–418.PubMedGoogle Scholar
- 70.Herscovitch P, Markham J, Raichle ME. Brain blood flow measured with intravenous H2 15O. I. Theory and error analysis. J Nucl Med 1983;24(9):782–789PubMedGoogle Scholar
- 71.Raichle ME, Martin WR, Herscovitch P, Mintun MA, Markham J. Brain blood flow measured with intravenous H2 15O. II. Implementation and validation. J Nucl Med 1983;24(9):790–798PubMedGoogle Scholar
- 72.Mintun MA, Raichle ME, Martin WR, Herscovitch P. Brain oxygen utilization measured with O-15 radiotracers and positron emission tomography. J Nucl Med 1984;25(2):177–187.PubMedGoogle Scholar
- 73.Duncan JD, Moss SD, Bandy DJ, Manwaring K, Kaplan AM, Reiman EM, Chen K Lawson MA, Wodrich DL. Use of positron emission tomography for presurgical localization of eloquent brain areas in children with seizures. Pediatr Neurosurg 1997;26(3):144–156.PubMedCrossRefGoogle Scholar
- 74.Valk PE, Budinger TF, Levin VA, Silver P, Gutin PH, Doyle WK. PET of malignant cerebral tumors after interstitial brachytherapy. Demonstration of metabolic activity and correlation with clinical outcome. J Neurosurg (1988 Dec) 69(6):830–838PubMedCrossRefGoogle Scholar
- 75.Di Chiro G, DeLaPaz RL, Brooks RA, Sokoloff L, Kornblith PL, Smith BH Patronas NJ, Kufta CV, Kessler RM, Johnston GS, Manning RG, Wolf AP Glucose utilization of cerebral gliomas measured by [18F] fluorodeoxyglucose and positron emission tomography. Neurology 1982;32(12):1323–1329.PubMedGoogle Scholar
- 76.Min JJ, Iyer M, Gambhir SS. Comparison of [18F]FHBG and [14C]FIAU for imaging of HSV1-tk reporter gene expression: adenoviral infection vs stable transfection. Eur J Nucl Med Mol Imaging 2003.30(11):1547–1560PubMedCrossRefGoogle Scholar
- 77.Tjuvajev JG, Doubrovin M, Akhurst T, Cai S, Balatoni J, Alauddin MM, Finn R Bornmann W, Thaler H, Conti PS, Blasberg RG. Comparison of radiolabeled nucleoside probes (FIAU, FHBG, and FHPG) for PET imaging of HSV1-tk gene expression. J Nucl Med 2002;43(8):1072–1083.PubMedGoogle Scholar