Imaging in Oncology pp 43-66 | Cite as
Imaging of Spinal Tumors
- 3 Citations
- 1.5k Downloads
Spinal tumors can be grouped into 2 main categories: extradural (bone) and intradural. Intradural tumors are further grouped into intradural/intramedullary and intradural/extramedullary components.
Oncologists more commonly treat extradural malignant spinal tumors. Therefore, we will concentrate more on this group of tumors, complications such as compression fractures or cord compression and the percutaneous therapy with vertebroplasty. Relatively common benign and malignant primary bone tumors of the vertebrae are also briefly discussed, as well as the common intradural extramedullary and intradural intramedullary tumors.
Keywords
Compression Fracture Giant Cell Tumor Aneurysmal Bone Cyst Vertebral Hemangioma Intramedullary Spinal Cord TumorPreview
Unable to display preview. Download preview PDF.
References
- 1.Algra PR, Bloem JL, Tissing H, et al. Detection of vertebral metastases: comprasion between MRI and bone scintigraphy. Radiographics 1991; 11:219–32.PubMedGoogle Scholar
- 2.Mundy Gr, Yoneda T. Facilitation and suppression of bone metastasis. Clin Orthop 1995;312:34–44.PubMedGoogle Scholar
- 3.Clohisy DR, perkins SL, Ramnaraine ML. Review of cellular mechanisms of tumor osteolysis. Clin Orthop 2000;373:104–14.PubMedCrossRefGoogle Scholar
- 4.Papagelopoulos PJ, Savvidou OD, Galanis EC, et al. Advances and challenges in diagnosis and management of skeletal metastases. Orthopedics 2006;29[7];608–20Google Scholar
- 5.Padhani A, Husband J. Bone metastases. In: Husband JES, Reznek RH, eds. Imaging in Oncology Oxford, U.K.: Isis Medical Media Ltd.; 1998:765–787Google Scholar
- 6.Eustace S, Tello R, DeCarvalho V, et al. A comparison of whole-body TurboSTIR MRI and Planar 99mTc-methylene Diphosphonate scintigraphy in the examination of patients with suspected skeletal metastases. AJR 1997; 169:1655–61.PubMedGoogle Scholar
- 7.Walker R, Kessar P, Blanchard R, et al. Turbo STIR magnetic resonance imaging as a whole-body screening tool for metastases in patients with breast carcinoma: preliminary clinical experience. J Magn Reson Imaging. 2000 Apr;11(4):343–50.PubMedCrossRefGoogle Scholar
- 8.Frat A, Agildere M, Gencoglu A, et al. Value of whole-body turbo short tau inversion recovery magnetic resonance imaging with panoramic table for detecting bone metastases: comparison with 99MTc-methylene diphosphonate scintigraphy. J Comput Assist Tomogr. 2006 Jan-Feb;30(1):151–6PubMedCrossRefGoogle Scholar
- 9.Masaryk TJ. Spinal Tumors. In: Modic MT, Masaryk TJ, Ross JS, eds. Magnetic Resonance Imaging of the Spine. Ed. 2. St. Louis, Missouri. Mosby-Year Book Inc. 1994; 249–314Google Scholar
- 10.Vande Berg BC, Lecouvet FE, Michaux L et al. Magnetic resonance imaging of the bone marrow in hematological malignancies. Eur Radiol 1998;8:1335–44.CrossRefGoogle Scholar
- 11.Jantunen E, Laakso M. Biophosphonates in multiple myeloma:current status; future perspectives. Br J Haematol 1996;93:501–6.PubMedCrossRefGoogle Scholar
- 12.Mahnken AH, Wildberger JE, Gehbauer G. et al. Multidetector CT of the spine in multiple myeloma: Comparison with MRI and radiography. Am J Roentgenol 2002;178:1429–36.Google Scholar
- 13.Lecouvet FE, Vande Berg BC, Maldague BE, et al. Vertebral compression fractures in multiple myeloma: Distribution and appearance at MRI. Radiology 1997;204:195–9.PubMedGoogle Scholar
- 14.Baker LL, Goodman SB, Perkash I, Lane B, Enzmann DR. Benign versus pathologic compression fractures of vertebral bodies: assessment with conventional spin-echo, chemical shift, and STIR MRI. Radiology 1990;174:495–502.PubMedGoogle Scholar
- 15.An HS, Andreshak TG, Nguyen C, Williams A, Daniels D. Can we distinguish between benign versus malignant compression fractures of the spine by magnetic resonance imaging? Spine 1995; 20:1776–82.PubMedGoogle Scholar
- 16.Jung H, Jee W, McCauley TR, Ha K, Choi K. Discrimination of metastatic from acute osteoporotic compression spinal fractures with MRI. Radiographics 2003;23:179–87.PubMedCrossRefGoogle Scholar
- 17.Erly WK, Oh ES, Outwater EK. The utility of in-phase/opposed-phase imaging in differentiating malignancy from acute benign compression fractures of the spine. Am J neuroradiol 2006; 27;1183–88.PubMedGoogle Scholar
- 18.Zajick DC, Morrison WB, Schweitzer ME, Parellada JA, Carrino JA. Benign and Malignant Processes: Normal values and differentiation with chemical shift MRI in vertebral marrow. Radiology 2005;237:590–6.PubMedCrossRefGoogle Scholar
- 19.Baur A, Huber A, Ertl-Wagner B, et al. Diagnostic value of increased diffusion weighting of a steady-state free precession sequence for differentiating acute benign osteoporotic fractures from pathologic vertebral compression fractures. AJNR Am J Neuroradiol 2001;22:366–72.PubMedGoogle Scholar
- 20.Castillo M, Arbelaez A, Smith JK, Fisher LL. Diffusion-weighted MRI offers no advantage over routine noncontrast MRI in the detection of vertebral metastasis. AJNR Am J Neuroradiol 2002;21:948–53.Google Scholar
- 21.Zhou XJ, Leeds NE, McKinnon GC, Kumar AJ. Characterization of benign and metastatic compression fractures with quantitative diffusion MRI. AJNR Am J Neuroradiol 2002;23:165–70.PubMedGoogle Scholar
- 22.Maeda M, Sakuma H, Maier SE, Takeda K. Quantitative assessment of diffusion abnormalities in benign and malignant vertebral compression fractures by line scan diffusion-weighted imaging. AJR 2003; 181:1203–9.PubMedGoogle Scholar
- 23.Levack P, Graham J, Collie D, et al. Don’t wait for a sensory level-Listen to the symptoms: a prospective audit of the delays in diagnosis of malignant cord compression. Clinical Oncology 2002;14:472–480.PubMedCrossRefGoogle Scholar
- 24.Facon D, Ozanne A, Fillard P, et al. AJNR AM J Neuroradiol 2005 26:1587–94PubMedGoogle Scholar
- 25.Keogh C, Bergin D, Brennan D, and Eustace S. MRI of bone tumors of the cervical spine. MR Clinics of North America 2000;8(3):513–27.Google Scholar
- 26.Geirnaerdt MJA, Hogendoorn PCW, Bloem JL, Taminiau AHM, and van der Woude HJ. Cartilaginous Tumors: Fast Contrast-enhanced MRI. Radiology. 2000;214:539–46.PubMedGoogle Scholar
- 27.Baudrez V, Gallant C, Lecouvet FE, et al. Vertebral hemangioma: MR-histological correlation in autopsy specimens. Radiology 1999;213(P):245Google Scholar
- 28.Dahlin DC, Unni KK. Bone tumors; general aspects and data on 8, 542 cases. Springfield III, Thomas, 1986, 62–9Google Scholar
- 29.Koeller KK, Rosenblum RS, Morrison AL. Neoplasms of the spinal cord and filum terminale: radiologic-pathologic correlation. RadioGraphics 2000;20:1721–1749.PubMedGoogle Scholar
- 30.Waldron JS, Cha S. Radiographic Features of Intramedullary Spinal Cord Tumors. Neurosurgery Clinics of North America 2006;17:13–19.PubMedCrossRefGoogle Scholar
- 31.Takemoto K, Matsumura Y, Hashimoto H, et al. MRI of intraspinal tumors: capability in histological differentiation and compartmentalization of extramedullary tumors. Neuroradiology 1988;30:303–309.PubMedCrossRefGoogle Scholar
- 32.Marliani AF, Clementi V, Albini-Riccioli L. Quantitative proton magnetic resonance spectroscopy of the human cervical spinal cord at 3 Tesla. Magn Reson Med 2006;57:160–163.CrossRefGoogle Scholar
- 33.Dillon WP, Norman D, Newton TH, et al. Intradural spinal cord lesions: Gd-DTPA enhanced MRI. Radiology 1989;170:229–237.PubMedGoogle Scholar
- 34.Rossi C, Boss A, Linding TM et al. Diffusion tensor imaging of the spinal cord at 1.5 and 3.0 tesla. Rofo. 2007 Mar; 179(3):219–24.PubMedGoogle Scholar
- 35.Kendi AT, Tan FU, Kendi M, et al. MR spectroscopy of cervical spinal cord in patients with multiple sclerosis. Neuroradiology. 2004 Sep; 46(9) 764–9.PubMedCrossRefGoogle Scholar
- 36.Ducreux D, Lepeintre JF, Fillard P, et al. MR diffusion tensor imaging and fiber tracking in 5 spinal cord astrocytomas. AJNR Am J Neuroradiol. 2006 Jan; 27(1):214–6.PubMedGoogle Scholar
- 37.Ferrante L, Mastronardi L, Celli P, Lunardi P, Acqui M, Fortuna A. Intramedullary spinal cord ependymomas: a study of 45 cases with long-term follow-up. Acta Neurochir 1992;119:74–79.CrossRefGoogle Scholar
- 38.Dickman CA, Fehlings MG, Gokaslan ZL. In: Dickman CA, Fehlings MG, Gokaslan ZL, eds. Spinal Cord and Spinal Column Tumors: Principles and Practice. New York, NY: Thieme; 2006:145–176.Google Scholar
- 39.Cooper P. Outcome after operative treatment of intramedullary spinal cord tumors in adults: intermediate and long-term results in 51 patients. Neurosurgery 1989;25:855–859.PubMedCrossRefGoogle Scholar
- 40.Patel U, Pinto RS, Miller DC, et al. MR of spinal cord ganglioglioma. AJNR Am J Neuroradiol. 1998;19:879–887.PubMedGoogle Scholar
- 41.Osborn AG. Tumors, cysts, and tumorlike lesions of the spine and spinal cord. In: Osborn A, eds. Diagnostic neuroradiology. St Louis, Mo: MosbyYear Book, 1994;895–916Google Scholar
- 42.Bloomer CW, Ackerman A, Bhatia RG. Imaging for spine tumors and new applications.Top Magn Reson Imaging. 2006 Apr; 17(2):69–87.PubMedCrossRefGoogle Scholar
- 43.Traul DE, Shaffrey ME, Schiff D. Part I: Spinal-cord neoplasms-intradural neoplasms. Lancet Oncol. 2007 Jan;8(1):35–45.PubMedCrossRefGoogle Scholar
- 44.Levy WJ, Latchaw J, Hahn JF, et al. Spinal neurofibromas: a report of 66 cases and a comparison with meningiomas. Neurosurgery. 1986;18:331–334.PubMedGoogle Scholar
- 45.DeVerdelhan O, Haegelen C, Carsin-Nicol B, et al. MRI features of spinal schwannomas and meningiomas. J Neuroradiol. 2005;32:42–49.CrossRefGoogle Scholar
- 46.Perrin RG, Livingston KE, Aarabi B. Intradural extramedullary spinal metastasis. A report of 10 cases. J Neurosurg. 1982;56:835–837PubMedCrossRefGoogle Scholar
- 47.Galibert P, Deramond H. Percutaneous acrylic vertebroplasty as a treatment of vertebral angioma as well as painful and debilitating diseases. Chirurgie 1990;116:326–34.PubMedGoogle Scholar
- 48.Cotten A., Boutry N., Cortet B., Assaker R., Demondion X., Leblond D., Chastanet P., Duquesnoy B., Deramond H. Percutaneous vertebroplasty: state of the art. Radiographics 1998;18:311–20.PubMedGoogle Scholar
- 49.Dufresne AC, Brunet E, Sola-Martinez MT, Rose M, Chiras J. Percutaneous vertebroplasty of the cervico-thoracic junction using an anterior route. Technique and results. Report of nine cases. J Neuroradiol 1998 Jul; 25(2):123–8.PubMedGoogle Scholar
- 50.Weill A, Chiras J, Simon JM, Rose M, Sola-Martinez T, Enkaoua E. Spinal metastases: indications for and results of percutaneous injection of acrylic surgical cement. Radiology 1996; 199:241–7.PubMedGoogle Scholar
- 51.Barr M., Barr J. Invited commentary. RadioGraphics 1998;18:320–322.Google Scholar
- 52.Cotten A, Deramond H, Cortet B, Lejeune JP, Leclerc X, Chastanet P, Clarisse J Preoperative percutaneous injection of methyl methacrylate and N-butyl cyanoacrylate intervertebral hemangiomas. AJNR Am J Neuroradiol 1996 Jan;17(1):137–42.PubMedGoogle Scholar
- 53.Jensen ME, Evans AJ, Mathis JM, Kallmes DF, Cloft HJ, Dion JE. Percutaneous polymethylmethacrylate vertebroplasty in the treatment of osteoporotic vertebral body compression fractures: technical aspects. AJNR Am J Neuroradiol 1997 Nov-Dec18 (10):1897–904PubMedGoogle Scholar
- 54.Cortet B, Cotten A, Boutry N, Dewatre F, Flipo RM, Duquesnoy B, Chastanet P, Delcambre B. Percutaneous vertebroplasty in patients with osteolytic metastases or multiple myeloma. Rev Rhum Engl Ed 1997 Mar;64(3):177–83.PubMedGoogle Scholar
- 55.Martin JB, Sugiu K, San Millian R, Murphy K J, Piotin M, Rufenacht DA. Vertebroplasty: clinical experience and follow-up results. Bone Vol. 25, No. 2, Supplement, 11S–15S, 1999.PubMedCrossRefGoogle Scholar