Advertisement

Pediatric Malignancies: Synopsis of Current Imaging Techniques

  • Sabah Servaes
  • Monica Epelman
  • Avrum Pollock
  • Karuna Shekdar
Part of the Cancer Treatment and Research book series (CTAR, volume 143)

The imaging evaluation of malignancies is directed towards the assessment of size, location and characterization of the neoplasm. Imaging children necessitates additional attention to the dose of radiation, given the radiosensitivity and the expected longevity of children. This chapter will present some of the latest technologies used to image pediatric malignancies, as well as methods to evaluate the most common pediatric neoplasms.

Keywords

Positron Emission Tomography Inferior Vena Cava Magn Reson Image Mediastinal Mass Increase 18FDG Uptake 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berry JD, Cook GJ. Positron emission tomography in oncology. Br Med Bull 2006.Google Scholar
  2. 2.
    Juweid ME, Cheson BD. Positron-emission tomography and assessment of cancer therapy. N Engl J Med 2006;354:496–507.PubMedCrossRefGoogle Scholar
  3. 3.
    Dizendorf EV, Treyer V, Von Schulthess GK, Hany TF. Application of oral contrast media in coregistered positron emission tomography-CT. AJR Am J Roentgenol 2002;179:477–81.PubMedGoogle Scholar
  4. 4.
    Rodriguez-Vigil B, Gomez-Leon N, Pinilla I, et al. PET/CT in lymphoma: prospective study of enhanced full-dose PET/CT versus unenhanced low-dose PET/CT. J Nucl Med 2006;47:1643–8.PubMedGoogle Scholar
  5. 5.
    Schaefer NG, Hany TF, Taverna C, et al. Non-Hodgkin’s Lymphoma and Hodgkin’s disease: co-registered FDG PET and CT at staging and restaging–do we need contrast-enhanced CT? Radiology 2004;232:823–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Antoch G, Freudenberg LS, Beyer T, Bockisch A, Debatin JF. To enhance or not to enhance? 18F-FDG and CT contrast agents in dual-modality 18F-FDG PET/CT. J Nucl Med 2004;45 Suppl 1:56S–65S.PubMedGoogle Scholar
  7. 7.
    Antoch G, Freudenberg LS, Stattaus J, et al. Whole-body positron emission tomography-CT: optimized CT using oral and IV contrast materials. AJR Am J Roentgenol 2002;179:1555–60.PubMedGoogle Scholar
  8. 8.
    Antoch G, Kuehl H, Kanja J, et al. Dual-modality PET/CT scanning with negative oral contrast agent to avoid artifacts: introduction and evaluation. Radiology 2004;230:879–85.PubMedCrossRefGoogle Scholar
  9. 9.
    Nanni C, Rubello D, Castellucci P, et al. 18F-FDG PET/CT fusion imaging in paediatric solid extracranial tumours. Biomed Pharmacother 2006;60:593–606.PubMedCrossRefGoogle Scholar
  10. 10.
    Hernandez-Pampaloni M, Takalkar A, Yu JQ, Zhuang H, Alavi A. F-18 FDG-PET imaging and correlation with CT in staging and follow-up of pediatric lymphomas. Pediatr Radiol 2006;36:524–31.PubMedCrossRefGoogle Scholar
  11. 11.
    Miller E, Metser U, Avrahami G, et al. Role of 18F-FDG PET/CT in staging and follow-up of lymphoma in pediatric and young adult patients. J Comput Assist Tomogr 2006;30:689–94.PubMedCrossRefGoogle Scholar
  12. 12.
    Furth C, Denecke T, Steffen I, et al. Correlative imaging strategies implementing CT, MRI, and PET for staging of childhood Hodgkin disease. J Pediatr Hematol Oncol 2006;28: 501–12.PubMedCrossRefGoogle Scholar
  13. 13.
    Arush MW, Israel O, Postovsky S, et al. Positron emission tomography/computed tomography with (18) fluoro-deoxyglucose in the detection of local recurrence and distant metastases of pediatric sarcoma. Pediatr Blood Cancer 2007;.Google Scholar
  14. 14.
    Ben Arush MW, Bar Shalom R, Postovsky S, et al. Assessing the use of FDG-PET in the detection of regional and metastatic nodes in alveolar rhabdomyosarcoma of extremities. J Pediatr Hematol Oncol 2006;28:440–5.PubMedCrossRefGoogle Scholar
  15. 15.
    Kavanagh PV, Stevenson AW, Chen MY, Clark PB. Nonneoplastic diseases in the chest showing increased activity on FDG PET. AJR Am J Roentgenol 2004;183:1133–41.PubMedGoogle Scholar
  16. 16.
    Blodgett TM, Casagranda B, Townsend DW, Meltzer CC. Issues, controversies, and clinical utility of combined PET/CT imaging: what is the interpreting physician facing? AJR Am J Roentgenol 2005;184:S138–45.PubMedGoogle Scholar
  17. 17.
    Schoder H, Gonen M. Screening for Cancer with PET and PET/CT: Potential and Limitations. J Nucl Med 2007;48 Suppl 1:4S–18S.PubMedGoogle Scholar
  18. 18.
    Daldrup-Link HE, Franzius C, Link TM, et al. Whole-body MR imaging for detection of bone metastases in children and young adults: comparison with skeletal scintigraphy and FDG PET. AJR Am J Roentgenol 2001;177:229–36.PubMedGoogle Scholar
  19. 19.
    Goo HW, Yang DH, Ra YS, et al. Whole-body MRI of Langerhans cell histiocytosis: comparison with radiography and bone scintigraphy. Pediatr Radiol 2006;36:1019–31.PubMedCrossRefGoogle Scholar
  20. 20.
    Hoffer FA. Magnetic resonance imaging of abdominal masses in the pediatric patient. Semin Ultrasound CT MR 2005;26:212–23.PubMedCrossRefGoogle Scholar
  21. 21.
    Kellenberger CJ, Miller SF, Khan M, Gilday DL, Weitzman S, Babyn PS. Initial experience with FSE STIR whole-body MR imaging for staging lymphoma in children. Eur Radiol 2004;14:1829–41.PubMedCrossRefGoogle Scholar
  22. 22.
    Kellenberger CJ, Epelman M, Miller SF, Babyn PS. Fast STIR whole-body MR imaging in children. Radiographics 2004;24:1317–30.PubMedCrossRefGoogle Scholar
  23. 23.
    Laffan EE, O’Connor R, Ryan SP, V D. Whole-body magnetic resonance imaging: a useful additional sequence in paediatric imaging. Pediatr Radiol 2004;34:472–80.PubMedCrossRefGoogle Scholar
  24. 24.
    Mazumdar A, Siegel MJ, V N, Luchtman-Jones L. Whole-body fast inversion recovery MR imaging of small cell neoplasms in pediatric patients: a pilot study. AJR Am J Roentgenol 2002;179:1261–6.PubMedGoogle Scholar
  25. 25.
    Walker RE, Eustace SJ. Whole-body magnetic resonance imaging: techniques, clinical indications, and future applications. Semin Musculoskelet Radiol 2001;5:5–20.PubMedCrossRefGoogle Scholar
  26. 26.
    Eustace SJ, Walker R, Blake M, Yucel EK. Whole-body MR imaging. Practical issues, clinical applications, and future directions. Magn Reson Imaging Clin N Am 1999;7:209–36.PubMedGoogle Scholar
  27. 27.
    Siegel MJ, Luker GG. Bone marrow imaging in children. Magn Reson Imaging Clin N Am 1996;4:771–96.PubMedGoogle Scholar
  28. 28.
    Mentzel HJ, Kentouche K, Sauner D, et al. Comparison of whole-body STIR-MRI and 99 mTc-methylene-diphosphonate scintigraphy in children with suspected multifocal bone lesions. Eur Radiol 2004;14:2297–302.PubMedCrossRefGoogle Scholar
  29. 29.
    Levine DS, Navarro OM, Chaudry G, Doyle JJ, Blaser SI. Imaging the complications of bone marrow transplantation in children. Radiographics 2007;27:307–24.PubMedCrossRefGoogle Scholar
  30. 30.
    Brenner D, Elliston C, Hall E, Berdon W. Estimated risks of radiation-induced fatal cancer from pediatric CT. AJR Am J Roentgenol 2001;176:289–96.PubMedGoogle Scholar
  31. 31.
    Lowe LH, Isuani BH, Heller RM, et al. Pediatric renal masses: Wilms’ tumor and beyond. Radiographics 2000;20:1585–603.PubMedGoogle Scholar
  32. 32.
    Panicek DM, Go SD, Healey JH, Leung DH, Brennan MF, Lewis JJ. Soft tissue sarcoma involving bone or neurovascular structures: MR imaging prognostic factors. Radiology 1997;205:871–5.PubMedGoogle Scholar
  33. 33.
    Riccabona M. (Paediatric) magnetic resonance urography: just fancy images or a new important diagnostic tool? Curr Opin Urol 2007;17:48–55.PubMedCrossRefGoogle Scholar
  34. 34.
    Nolte-Ernsting CC, Staatz G, Tacke J, Gunther RW. MR urography today. Abdom Imaging 2003;28:191–209.PubMedCrossRefGoogle Scholar
  35. 35.
    Dowling C, Bollen AW, Noworolski SM, et al. Preoperative proton MR spectroscopic imaging of brain tumors: correlation with histopathologic analysis of resection specimens. AJNR Am J Neuroradiol 2001;22:604–12.PubMedGoogle Scholar
  36. 36.
    Hunter JV, Wang ZJ. MR spectroscopy in pediatric neuroradiology. Magn Reson Imaging Clin N Am 2001;9:165,89, ix.PubMedGoogle Scholar
  37. 37.
    Lazareff JA, Gupta RK, Alger J. Variation of post-treatment H-MRSI choline intensity in pediatric gliomas. J Neurooncol 1999;41:291–8.PubMedCrossRefGoogle Scholar
  38. 38.
    Tzika AA, Zurakowski D, Poussaint TY, et al. Proton magnetic spectroscopic imaging of the child’s brain: the response of tumors to treatment. Neuroradiology 2001;43:169–77.PubMedCrossRefGoogle Scholar
  39. 39.
    Cha S, Lu S, Johnson G, Knopp EA. Dynamic susceptibility contrast MR imaging: correlation of signal intensity changes with cerebral blood volume measurements. J Magn Reson Imaging 2000;11:114–9.PubMedCrossRefGoogle Scholar
  40. 40.
    Roberts HC, Roberts TP, Brasch RC, Dillon WP. Quantitative measurement of microvascular permeability in human brain tumors achieved using dynamic contrast-enhanced MR imaging: correlation with histologic grade. AJNR Am J Neuroradiol 2000;21:891–9.PubMedGoogle Scholar
  41. 41.
    Cha S, Knopp EA, Johnson G, Wetzel SG, Litt AW, Zagzag D. Intracranial mass lesions: dynamic contrast-enhanced susceptibility-weighted echo-planar perfusion MR imaging. Radiology 2002;223:11–29.PubMedCrossRefGoogle Scholar
  42. 42.
    Cha S, Knopp EA, Johnson G, et al. Dynamic contrast-enhanced T2-weighted MR imaging of recurrent malignant gliomas treated with thalidomide and carboplatin. AJNR Am J Neuroradiol 2000;21:881–90.PubMedGoogle Scholar
  43. 43.
    Siegal T, Rubinstein R, Tzuk-Shina T, Gomori JM. Utility of relative cerebral blood volume mapping derived from perfusion magnetic resonance imaging in the routine follow up of brain tumors. J Neurosurg 1997;86:22–7.PubMedCrossRefGoogle Scholar
  44. 44.
    Olsen OE, Sebire NJ. Apparent diffusion coefficient maps of pediatric mass lesions with free-breathing diffusion-weighted magnetic resonance: feasibility study. Acta Radiol 2006;47:198–204.PubMedCrossRefGoogle Scholar
  45. 45.
    Humphries PD, Wynne CS, Sebire NJ, Olsen OE. Atypical abdominal paediatric lymphangiomatosis: diagnosis aided by diffusion-weighted MRI. Pediatr Radiol 2006;36:857–9.PubMedCrossRefGoogle Scholar
  46. 46.
    Murtz P, Flacke S, Traber F, van den Brink JS, Gieseke J, Schild HH. Abdomen: diffusion-weighted MR imaging with pulse-triggered single-shot sequences. Radiology 2002;224:258–64.PubMedCrossRefGoogle Scholar
  47. 47.
    Schubauer-Berigan MK, Daniels RD, Fleming DA, et al. Risk of chronic myeloid and acute leukemia mortality after exposure to ionizing radiation among workers at four U.S. nuclear weapons facilities and a nuclear naval shipyard. Radiat Res 2007;167:222–32.PubMedCrossRefGoogle Scholar
  48. 48.
    Shuryak I, Sachs RK, Hlatky L, Little MP, Hahnfeldt P, Brenner DJ. Radiation-induced leukemia at doses relevant to radiation therapy: modeling mechanisms and estimating risks. J Natl Cancer Inst 2006;98:1794–806.PubMedGoogle Scholar
  49. 49.
    Steliarova-Foucher E, Stiller C, Lacour B, Kaatsch P. International Classification of Childhood Cancer, third edition. Cancer 2005;103:1457–67.PubMedCrossRefGoogle Scholar
  50. 50.
    Amthauer H, Furth C, Denecke T, et al. FDG-PET in 10 children with Non-Hodgkin’s Lymphoma: initial experience in staging and follow-up. Klin Padiatr 2005;217:327–33.PubMedCrossRefGoogle Scholar
  51. 51.
    Collins CD. PET in lymphoma. Cancer Imaging 2006;6:S63–70.PubMedCrossRefGoogle Scholar
  52. 52.
    Elstrom R, Guan L, Baker G, et al. Utility of FDG-PET scanning in lymphoma by WHO classification. Blood 2003;101:3875–6.PubMedCrossRefGoogle Scholar
  53. 53.
    Friedberg JW, Fischman A, Neuberg D, et al. FDG-PET is superior to gallium scintigraphy in staging and more sensitive in the follow-up of patients with de novo Hodgkin lymphoma: a blinded comparison. Leuk Lymphoma 2004;45:85–92.PubMedCrossRefGoogle Scholar
  54. 54.
    Guermazi A, Juweid ME. Commentary: PET poised to alter the current paradigm for response assessment of non-Hodgkin’s lymphoma. Br J Radiol 2006;79:365–7.PubMedCrossRefGoogle Scholar
  55. 55.
    Hermann S, Wormanns D, Pixberg M, et al. Staging in childhood lymphoma: differences between FDG-PET and CT. Nuklearmedizin 2005;44:1–7.PubMedGoogle Scholar
  56. 56.
    Montravers F, McNamara D, Landman-Parker J, et al. (18) FDG in childhood lymphoma: clinical utility and impact on management. Eur J Nucl Med Mol Imaging 2002;29:1155–65.PubMedCrossRefGoogle Scholar
  57. 57.
    Rini JN, Nunez R, Nichols K, et al. Coincidence-detection FDG-PET versus gallium in children and young adults with newly diagnosed Hodgkin’s disease. Pediatr Radiol 2005;35:169–78.PubMedCrossRefGoogle Scholar
  58. 58.
    Willkomm P, Palmedo H, Grunwald F, Ruhlmann J, Biersack HJ. Functional imaging of Hodgkin’s disease with FDG-PET and gallium-67. Nuklearmedizin 1998;37:251–3.PubMedGoogle Scholar
  59. 59.
    Juweid ME. Utility of Positron Emission Tomography (PET) Scanning in Managing Patients with Hodgkin’s Lymphoma. Hematology Am Soc Hematol Educ Program 2006;:259–65.Google Scholar
  60. 60.
    Jhanwar YS, Straus DJ. The role of PET in lymphoma. J Nucl Med 2006;47:1326–34.PubMedGoogle Scholar
  61. 61.
    Kellenberger CJ, Epelman M, Miller SF, Babyn PS. Fast STIR whole-body MR imaging in children. Radiographics 2004;24:1317–30.PubMedCrossRefGoogle Scholar
  62. 62.
    Frush DP, Donnelly LF, Rosen NS. Computed tomography and radiation risks: what pediatric health care providers should know. Pediatrics 2003;112:951–7.PubMedCrossRefGoogle Scholar
  63. 63.
    Hsu SC, Metzger ML, Hudson MM, et al. Comparison of treatment outcomes of childhood Hodgkin’s lymphoma in two US centers and a center in Recife, Brazil. Pediatr Blood Cancer 2006.Google Scholar
  64. 64.
    2005–2006 Statistical Report: Primary Brain Tumors in the United States Statistical Report, 1998–2002 (Years Data Collected). Illinois, 2005 (http://www.cbtrus.org/reports//2005–2006/ 2006report.pdf.).
  65. 65.
    Wang Z, Zimmerman RA, Sauter R. Proton MR spectroscopy of the brain: clinically useful information obtained in assessing CNS diseases in children. AJR Am J Roentgenol 1996;167:191–9.PubMedGoogle Scholar
  66. 66.
    Papaioannou G, McHugh K. Neuroblastoma in childhood: review and radiological findings. Cancer Imaging 2005;5:116–27.PubMedCrossRefGoogle Scholar
  67. 67.
    Lonergan GJ, Schwab CM, Suarez ES, Carlson CL. Neuroblastoma, ganglioneuroblastoma, and ganglioneuroma: radiologic-pathologic correlation. Radiographics 2002;22:911–34.PubMedGoogle Scholar
  68. 68.
    Andrich MP, Shalaby-Rana E, Movassaghi N, Majd M. The role of 131 iodine-metaiodobenzylguanidine scanning in the correlative imaging of patients with neuroblastoma. Pediatrics 1996;97:246–50.PubMedGoogle Scholar
  69. 69.
    Gordon I, Peters AM, Gutman A, Morony S, Dicks-Mireaux C, Pritchard J. Skeletal assessment in neuroblastoma–the pitfalls of iodine-123-MIBG scans. J Nucl Med 1990;31:129–34.PubMedGoogle Scholar
  70. 70.
    Ritchey ML, Kelalis PP, Haase GM, Shochat SJ, Green DM, D’Angio G. Preoperative therapy for intracaval and atrial extension of Wilms tumor. Cancer 1993;71:4104–10.PubMedCrossRefGoogle Scholar
  71. 71.
    Ritchey ML, Shamberger RC, Haase G, Horwitz J, Bergemann T, Breslow NE. Surgical complications after primary nephrectomy for Wilms’ tumor: report from the National Wilms’ Tumor Study Group. J Am Coll Surg 2001;192:63, 8; quiz 146.PubMedCrossRefGoogle Scholar
  72. 72.
    Grundy P, Perlman E, Rosen NS, et al. Current issues in Wilms tumor management. Curr Probl Cancer 2005;29:221–60.PubMedCrossRefGoogle Scholar
  73. 73.
    Wilimas JA, Kaste SC, Kauffman WM, et al. Use of chest computed tomography in the staging of pediatric Wilms’ tumor: interobserver variability and prognostic significance. J Clin Oncol 1997;15:2631–5.PubMedGoogle Scholar
  74. 74.
    Owens CM, Veys PA, Pritchard J, Levitt G, Imeson J, Dicks-Mireaux C. Role of chest computed tomography at diagnosis in the management of Wilms’ tumor: a study by the United Kingdom Children’s Cancer Study Group. J Clin Oncol 2002;20:2768–73.PubMedCrossRefGoogle Scholar
  75. 75.
    Rohrschneider WK, Weirich A, Rieden K, Darge K, Troger J, Graf N. US, CT and MR imaging characteristics of nephroblastomatosis. Pediatr Radiol 1998;28:435–43.PubMedCrossRefGoogle Scholar
  76. 76.
    Gylys-Morin V, Hoffer FA, Kozakewich H, Shamberger RC. Wilms tumor and nephroblastomatosis: imaging characteristics at gadolinium-enhanced MR imaging. Radiology 1993;188:517–21.PubMedGoogle Scholar
  77. 77.
    Breitfeld PP, Meyer WH. Rhabdomyosarcoma: new windows of opportunity. Oncologist 2005;10:518–27.PubMedCrossRefGoogle Scholar
  78. 78.
    Bernstein M, Kovar H, Paulussen M, et al. Ewing’s sarcoma family of tumors: current management. Oncologist 2006;11:503–19.PubMedCrossRefGoogle Scholar
  79. 79.
    Daldrup-Link HE, Franzius C, Link TM, et al. Whole-body MR imaging for detection of bone metastases in children and young adults: comparison with skeletal scintigraphy and FDG PET. AJR Am J Roentgenol 2001;177:229–36.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Sabah Servaes
    • 1
  • Monica Epelman
    • 1
  • Avrum Pollock
    • 1
  • Karuna Shekdar
    • 2
  1. 1.Department of RadiologyThe Children's Hospital of PhiladelphiaPhiladelphiaUSA
  2. 2.Department of NeuroradiologyHosp. of Univ. of PennsylvaniaPhiladelphiaUSA

Personalised recommendations