Advertisement

Nanofabrication by Self-Assembly

  • Zheng Cui
Chapter

Introduction

The nanofabrication technologies described in the previous chapters so far can be characterized as conventional technologies, in the sense that they always involve in one way or another lithographic patterning and pattern transfer. They are still the same as, or not too much different from, the technologies for manufacturing integrated circuits (ICs), which originated nearly 50 years ago in 1961 when the first patent on planar IC was granted, though today’s technologies can make pattern structures a thousand times smaller. It is a “top-down” approach that complex structures are built up by patterning layers upon layers from the surface of a planar substrate. The capabilities of top-down nanofabrication technologies have been amply demonstrated in previous chapters. The smallest features which can be made by top-down approach are, however, always limited by the available fabrication tools, being either lithography or pattern transfer. On the other hand, nature has...

Keywords

Block Copolymer Capillary Force Diblock Copolymer Porous Alumina Microphase Separation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Whitesides, G.M., J.P. Mathias, and C.T. Seto, Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures. Science, 1991. 254: p. 1312.CrossRefGoogle Scholar
  2. 2.
    Whitesides, G.M., Self Assembly and Nanotechnology, in Fourth Foresight Conference on Molecular Nanotechnology. 1995.Google Scholar
  3. 3.
    Whitesides, G.M. and B. Grzybowski, Self-assembly at all scales. Science, 2002. 295: p. 2418.CrossRefGoogle Scholar
  4. 4.
    Zhirnov, V. and D.J.C. Herr, New frontiers: self-assembly and nanoelectronics. IEEE Computer, 2001. 34(1): pp. 34–43.CrossRefGoogle Scholar
  5. 5.
    Andres, R., et al., The design, fabrication and electronic properties of self-assembled molecular nanostructures, in The Handbook of Nanostructured Materials and Nanotechnology, H.S. Nalwa, Editor. 1998, Academic Press: San Diego.Google Scholar
  6. 6.
    Liddle, J.A., Y. Cui, and P. Alivisatos, Lithographically directed self-assembly of nanostructures. J. Vac. Sci. Technol., 2004. B22(6): p. 3409.Google Scholar
  7. 7.
    Libbrecht, K., The enigmatic snowflakes. Physics World, 2008. 21(1): p. 19.Google Scholar
  8. 8.
    Denkov, N.D., et al., Mechanism of formation of two-dimensional crystals from latex particles on substrates. Langmuir, 1992. 8: pp. 3183–3190.CrossRefGoogle Scholar
  9. 9.
    Syms, R.R.A., et al., Surface tension-powered self-assembly of microstructures – the state of the art. J. Microelectromech. Syst., 2003. 12: pp. 387–417.CrossRefGoogle Scholar
  10. 10.
    Syms, R.R.A., Surface tension powered self-assembly of 3-D microoptomechanical structures. J. Microelectromech. Syst., 1999. 8(4): pp. 448–455.CrossRefGoogle Scholar
  11. 11.
    Striemer, C.C., et al., Charge- and size-based separation of macromolecules using ultrathin silicon membranes. Nature, 2007. 445: p. 05532.CrossRefGoogle Scholar
  12. 12.
    Aurongzeb, D., Low index faceting of Pt nanostructures on oxide surface with potential application for fuel cells. J. Appl. Phys., 2007. 102: p. 064302.CrossRefGoogle Scholar
  13. 13.
    Alaca, B.E., H. Sehitoglu, and T. Saif, Guided self-assembly of metallic nanowires and channels. Appl. Phys. Lett., 2004. 84(23): p. 4669.CrossRefGoogle Scholar
  14. 14.
    Pease, L.F., et al., Self-formation of sub-60-nm half-pitch gratings with large areas through fracturing. Nat. Nanotechnol., 2007. 2(9): pp. 545–548.CrossRefGoogle Scholar
  15. 15.
    Xia, Y. and G.M. Whitesides, Soft lithography. Angew. Chem. Int. Ed., 1998. 37: pp. 550–575.CrossRefGoogle Scholar
  16. 16.
    Ulman, A., Formation and structure of self-assembled monolayers. Chem. Rev., 1996. 96: pp. 1533–1554.CrossRefGoogle Scholar
  17. 17.
    Motesharei, K. and D.C. Myles, Molecular recognition on functionalized self-assembled monolayers of alkanethiols on gold. J. Am. Chem. Soc., 1998. 120: pp. 7328–7336.CrossRefGoogle Scholar
  18. 18.
    Jeoung, E., J.B. Carroll, and V.M. Rotello, Surface modification via ‘lock and key’ specific self-assembly of polyhedral oligomeric silsequioxane (POSS) derivatives to modified gold surfaces. Chem. Comm., 2002. 14: pp. 1510–1511.CrossRefGoogle Scholar
  19. 19.
    Wenz, G. and P. Liepold, Self-assembly of biotin and thio-functionalized carboxymethyl celluloses on gold and molecular recognition of streptavidin detected by surface plasmon resonance. Cellulose, 2007. 14(2): pp. 89–98.CrossRefGoogle Scholar
  20. 20.
    Barth, J.V., G. Costantini, and K. Kern, Engineering atomic and molecular nanostructures at surfaces. Nature, 2005. 437: p. 671.CrossRefGoogle Scholar
  21. 21.
    Lin, N., et al., Supramolecular engineering of metal-organic networks at surfaces, in Proceedings of the 12th International Conferences Scanning Tunneling Microscopy/Spectroscopy and Related Techniques, P.M. Koenraad and M. Kemerink, Editors. 2003. p. 144.Google Scholar
  22. 22.
    Langner, A., et al., Self-recognition and self-selection in multicomponent supramolecular coordination networks on surfaces. Proceedings of the National Academy of Sciences of the United States of America, 2007. 104(46): pp. 17927–17930.CrossRefGoogle Scholar
  23. 23.
    Vlasov, Y.A., et al., On-chip natural assembly of silicon photonic bandgap crystals. Nature, 2001. 414: p. 289.CrossRefGoogle Scholar
  24. 24.
    Velikov, K.P., A. Moroz, and A. van Blaaderen, Photonic crystals of core-shell colloidal particles. Appl. Phys. Lett., 2002. 80(1): p. 49.CrossRefGoogle Scholar
  25. 25.
    Sun, S., et al., Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science, 2000. 287: pp. 1989–1992.CrossRefGoogle Scholar
  26. 26.
    Anders, S., et al., Lithography and self-assembly for nanometer scale magnetism. Microelectronic Engineering, 2002. 61–62: pp. 569–575.CrossRefGoogle Scholar
  27. 27.
    Juillerat, F., et al., Fabrication of large-area ordered arrays of nanoparticles on patterned substrates. Nanotechnology, 2005. 16: pp. 1311–1316.CrossRefGoogle Scholar
  28. 28.
    Fan, F. and K.J. Stebe, Assembly of colloidal particles by evaporation on surfaces with patterned hydrophobicity. Langmuir, 2004. 20: pp. 3062–3067.CrossRefGoogle Scholar
  29. 29.
    Huwiler, C., et al., Self-assembly of functionalized spherical nanoparticles on chemically patterned microstructures. Nanotechnology, 2005. 16: pp. 3045–3052.CrossRefGoogle Scholar
  30. 30.
    Huck, W.T.S., Self-assembly meets nanofabrication: recent developments in microcontact printing and dip-pen nanolithography. Angew. Chem. Int. Ed., 2007. 46: pp. 2754–2757.CrossRefGoogle Scholar
  31. 31.
    Geyer, W., et al., Electron induced chemical nanolithography with self-assembled monolayers. J. Vac. Sci. Technol., 2001. B19(6): p. 2732.Google Scholar
  32. 32.
    Tien, J., A. Terfort, and G.M. Whitesides, Microfabrication through electrostatic self-assembly. Langmuir, 1997. 13: pp. 5349–5355.CrossRefGoogle Scholar
  33. 33.
    McCarty, L.S., A. Winkleman, and G.M. Whitesides, Electrostatic self-assembly of polystyrene microspheres by using chemically directed contact electrification . Angew. Chem. Int. Ed., 2007. 46: pp. 206–209.CrossRefGoogle Scholar
  34. 34.
    Trau, M., D.A. Saville, and I.A. Aksay, Field-induced layering of colloidal crystals. Science, 1996. 272: pp. 706–709.CrossRefGoogle Scholar
  35. 35.
    Trau, M., D.A. Saville, and I.A. Aksay, Assembly of colloidal crystals at electrode interfaces. Langmuir, 1997. 13: pp. 6375–6381.CrossRefGoogle Scholar
  36. 36.
    Solomentsev, Y., M. BoÈhmer, and J.L. Anderson, Clustering and pattern formation during electrophoretic deposition: a hydrodynamic model. Langmuir, 1997. 13: pp. 6058–6068.CrossRefGoogle Scholar
  37. 37.
    Hayward, R.C., D.A. Saville, and I.A. Aksay, Electrophoretic assembly of colloidal crystals with optically tunable micropatterns. Nature, 2000. 404: p. 56.CrossRefGoogle Scholar
  38. 38.
    Aizenberg, J., P.V. Braun, and P. Wiltzius, Patterned colloidal deposition controlled by electrostatic and capillary forces. Phys. Rev. Lett., 2000. 84(13): p. 2997.CrossRefGoogle Scholar
  39. 39.
    Lee J., Isobe T., and M. Senna, Preparation of ultrafine Fe3O4 particles by precipitation in the presence of PVA at high pH. J. Colloid and Interface Sci., 1996. 177: pp. 490–494.CrossRefGoogle Scholar
  40. 40.
    Yellen, B.B. and G. Friedman, Programmable assembly of colloidal particles using magnetic micro-well templates. Langmuir, 2004. 20: pp. 2553–2559.CrossRefGoogle Scholar
  41. 41.
    Liu, M., et al., Self-assembled magnetic nanowire arrays. Appl. Phys. Lett., 2007. 90: p.103105.CrossRefGoogle Scholar
  42. 42.
    Yellen, B.B., G. Friedman, and A. Feinerman, Analysis of interactions of nanoparticles with magnetic templates. J. Appl. Phys., 2002. 91(10): pp. 8552–8554.CrossRefGoogle Scholar
  43. 43.
    Ahniyaz, A., Y. Sakamoto, and L. Bergstrom, Magnetic field-induced assembly of oriented superlattices from maghemite nanocubes. Proceedings of the National Academy of Sciences of the United States of America, 2007. 104(45): pp. 17570–17574.CrossRefGoogle Scholar
  44. 44.
    Bensimon, D., et al., Stretching DNA with a receding meniscus: experiments and models. Phys. Rev. Lett., 1995. 74(23): p. 4754.CrossRefGoogle Scholar
  45. 45.
    Wang, M.D., et al., Stretching DNA with optical tweezers. Biophys. J. 1997. 72: pp. 1335–1346.CrossRefGoogle Scholar
  46. 46.
    Bensimon, A., et al., Alignment and sensitive detection of DNA by a moving interface. Science, 1994. 265: p. 2096.CrossRefGoogle Scholar
  47. 47.
    Gu, Q., et al., DNA nanowire fabrication. Nanotechnology, 2006. 17: pp. R14–R25.CrossRefGoogle Scholar
  48. 48.
    Austin, R.H., et al., Stretch genes. Physics Today, 1997. 50(2): pp. 32–38.CrossRefGoogle Scholar
  49. 49.
    Mirkin, C.A., et al., A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature, 1996. 382: p. 607.CrossRefGoogle Scholar
  50. 50.
    Chien, J.H., P.H. Chen, and L.S. Kuo, Protein detection using a radio frequency biosensor with amplified gold nanoparticles. Appl. Phys. Lett., 2007. 91: p.143901.CrossRefGoogle Scholar
  51. 51.
    Braun, E., et al., DNA-templated assembly and electrode attachment of a conducting silver wire. Nature, 1998. 391: p. 775.CrossRefGoogle Scholar
  52. 52.
    Quake, S.R. and A. Scherer, From micro- to nanofabrication with soft materials. Science, 2000. 290: p. 1536.CrossRefGoogle Scholar
  53. 53.
    Xin, H. and A.T. Woolley, DNA-templated nanotube localization. J. Am. Chem. Soc., 2003. 125: pp. 8710–8711.CrossRefGoogle Scholar
  54. 54.
    Keren, K., R.S. Berman, and E. Buchstab, DNA-templated carbon nanotube field-effect transistor. Science, 2003. 302: p. 1380.CrossRefGoogle Scholar
  55. 55.
    Deng, Z. and C. Mao, Molecular lithography with DNA nanostructures. Angew. Chem. Int. Ed., 2004. 43: pp. 4068–4070.CrossRefGoogle Scholar
  56. 56.
    Becerril, H.A. and A.T. Woolley, DNA shadow nanolithography. Small, 2007. 3(9): pp. 1534–1538.CrossRefGoogle Scholar
  57. 57.
    Goodman, R.P., et al., Rapid chiral assembly of rigid DNA building blocks for molecular nanofabrication. Science, 2005. 310: p. 1661.CrossRefGoogle Scholar
  58. 58.
    Bath, J. and A.J. Turberfield, DNA nanomachines. Nat. Nanotechnol., 2007. 2: p. 275.CrossRefGoogle Scholar
  59. 59.
    Iijima, S., Helical microtubules of graphitic carbon. Nature, 1991. 354: pp. 56–58.CrossRefGoogle Scholar
  60. 60.
    Carbon nanotube, definition provided in Wikipedia (web link: http://www.wikipedia.org/).
  61. 61.
    Jung, Y.J., Controlled synthesis of carbon nanotubes using chemical vapor deposition methods, in Nanomanufacturing Handbook, A. Busnaina, Editor. 2007, CRC Press.Google Scholar
  62. 62.
    Martel, R., et al., Single- and multi-wall carbon nanotube field-effect transistors. Appl. Phys. Lett., 1998. 73(17): p. 2447.CrossRefGoogle Scholar
  63. 63.
    Dovidenko, K., et al., FIB-assisted Pt deposition for carbon nanotube integration and 3-D nanoengineering. Mat. Res. Soc. Proc., 2003. H7.7: p. 739.Google Scholar
  64. 64.
    Jin, A., et al., Application of dual-beam system in material science and technology. Chinese Journal of Nonferrous Metals, 2004. Z2: p. 56.Google Scholar
  65. 65.
    Liu, J., et al., Controlled deposition of individual single-walled carbon nanotubes on chemically functionalized templates. Chem. Phys. Lett., 1999. 303: pp. 125–129.CrossRefGoogle Scholar
  66. 66.
    Valentin, E., et al., High-density selective placement methods for carbon nanotubes. Microelectronic Engineering, 2002. 61–62: pp. 491–496.CrossRefGoogle Scholar
  67. 67.
    Kong, J., et al., Synthesis of individual single walled carbon nanotubes on patterned silicon wafers. Nature. 1998. 395: p. 878.Google Scholar
  68. 68.
    Zhang, Y., et al., Electric-field-directed growth of aligned single-walled carbon nanotubes. Appl. Phys. Lett., 2001. 79(19): p. 3155.CrossRefGoogle Scholar
  69. 69.
    Tsakalakos, L., Manufacturing electrical contacts to nanostructures, in Nanomanufacturing Handbook, A. Busnaina, Editor. 2007, CRC Press.Google Scholar
  70. 70.
    Cantoro, M., et al., Catalytic chemical vapor deposition of single-wall carbon nanotubes at low temperatures. Nano Lett., 2006. 6: pp. 1107–1112.CrossRefGoogle Scholar
  71. 71.
    Merkulov, V.I., et al., Patterned growth of individual and multiple vertically aligned carbon nanofibers. Appl. Phys. Lett., (2000). 76(24): p. 3555.CrossRefGoogle Scholar
  72. 72.
    Teo, K.B.K., et al., Uniform patterned growth of carbon nanotubes without surface carbon. Appl. Phys. Lett., 2001. 79(10): p. 1534.CrossRefGoogle Scholar
  73. 73.
    Robertson, J., Growth of nanotubes for electronics. Materialstoday, 2007. 10(1–2): p.36.CrossRefGoogle Scholar
  74. 74.
    Ruzette, A.-V. and L. Leibler, Block copolymers in tomorrow’s plastics. Nature Mater., 2005. 4: p. 19.CrossRefGoogle Scholar
  75. 75.
    Park, C., J. Yoon, and E.L. Thomas, Enabling nanotechnology with self assembled block copolymer patterns. Polymer, 2003. 44: pp. 6725–6760.CrossRefGoogle Scholar
  76. 76.
    Xu, H., et al., Flow-enhanced epitaxial ordering of brush-like macromolecules on graphite. Langmuir, 2006. 22(3): pp. 1254–1259.CrossRefGoogle Scholar
  77. 77.
    Morkved, T.L., et al., Local control of microdomain orientation in diblock copolymer thin films with electric fields. Science, 1996. 273(5277): pp. 931–933.CrossRefGoogle Scholar
  78. 78.
    Hahm, J. and S.J. Sibener, Cylinder alignment in annular structures of microphase-separated polystyrene-b-poly(methyl methacrylate). Langmuir, 2000. 16(11): pp. 4766–4769.CrossRefGoogle Scholar
  79. 79.
    Edwards, E.W., et al., Long-range order and orientation of cylinder-forming block copolymers on chemically nanopatterned striped surfaces. Macromolecules, 2006. 39(10): pp. 3598–3607.CrossRefGoogle Scholar
  80. 80.
    Keller, A., E. Pedemonte, and F.M. Willmouth, Macro-lattice from segregated amorphous phases of a three block copolymer. Nature, 1970. 225: p. 538.CrossRefGoogle Scholar
  81. 81.
    Ashok, B., M. Muthukumar, and T.P. Russell, Confined thin film diblock copolymer in the presence of an electric field. J. Chem. Phys., 2001. 115: p. 1559.CrossRefGoogle Scholar
  82. 82.
    Cheng, J.Y., et al., Templated self-assembly of block copolymers: effect of substrate topography. Adv. Mater., 2003. 15: pp. 1599–1602.CrossRefGoogle Scholar
  83. 83.
    Cheng, J.Y., A.M. Mayes, and C.A. Ross, Nanostructure engineering by templated self-assembly of block copolymers. Nature Mater., 2004. 3: p. 823.CrossRefGoogle Scholar
  84. 84.
    Stoykovich, M.P., et al., Directed assembly of block copolymer blends into nonregular device-oriented structures. Science, 2005. 308: p. 1442.CrossRefGoogle Scholar
  85. 85.
    Harrison, C., et al., Lithography with a mask of block copolymer microstructures. J. Vac. Sci. Technol., 1998. B16: p. 544.Google Scholar
  86. 86.
    Black, C.T., et al., Highly porous silicon membrane fabrication using polymer self-assembly. J. Vac. Sci. Technol., 2006. B24: p. 3188.Google Scholar
  87. 87.
    Chai, J., et al., Assembly of aligned linear metallic patterns on silicon. Nat. Nanotechnol., 2007. 2(8): pp. 500–506.CrossRefGoogle Scholar
  88. 88.
    Cheng, J.Y., et al., Fabrication of nanostructures with long-range order using block copolymer lithography. Appl. Phys. Lett., 2002. 81(19): pp. 3657–3659.CrossRefGoogle Scholar
  89. 89.
    Zhang, G., et al., Cicada wings: a stamp from nature for nanoimprint lithography. Small, 2006. 2(12): pp. 1440–1443.CrossRefGoogle Scholar
  90. 90.
    Hitchon, W.N.G., Plasma Processes for Semiconductor Fabrication. Cambridge Studies in Semiconductor Physics and Microelectronic Engineering. 1999, Cambridge University Press.Google Scholar
  91. 91.
    Burgos, N., M. Paulis, and M. Montes, Preparation of Al 2 O 3 /Al monoliths by anodisation of aluminium as structured catalytic supports. J. Mater. Chem., 2003. 13: pp. 1458–1467.Google Scholar
  92. 92.
    Masuda, H. and K. Fukuda, Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science, 1995. 268: p. 1466.CrossRefGoogle Scholar
  93. 93.
    Li, Y., et al., Fabrication of highly ordered nanoporous alumina films by stable high-field anodization. Nanotechnology, 2006. 17: pp. 5101–5105.CrossRefGoogle Scholar
  94. 94.
    Myung, N.V., et al., Alumina nanotemplate fabrication on silicon substrate. Nanotechnology, 2004. 15: pp. 833–838.CrossRefGoogle Scholar
  95. 95.
    Choi, J., et al., Perfect two-dimensional porous alumina photonic crystals with duplex oxide layers. J. Appl. Phys., 2003. 94(8): p. 4757.CrossRefGoogle Scholar
  96. 96.
    Huber, C.A., et al., Nanowire array composites. Science, 1994. 263: p. 800.CrossRefGoogle Scholar
  97. 97.
    Losic, D., et al., Fabrication of gold nanorod arrays by templating from porous alumina. Nanotechnology, 2005. 16: p. 2275.CrossRefGoogle Scholar
  98. 98.
    Gultepe, E., et al., High-throughput assembly of nanoelements in nanoporous alumina templates. Appl. Phys. Lett., 2007. 90: p. 163119.CrossRefGoogle Scholar
  99. 99.
    Li, C.-P., et al., Fabrication and structural characterization of highly ordered sub-100-nm planar magnetic nanodot arrays over 1 cm 2 coverage area. J. Appl. Phys., 2006. 100: p. 074318.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Zheng Cui
    • 1
  1. 1.Rutherford Appleton LaboratoryCouncil for the Central Laboratory of the Research CouncilsChiltonUK

Personalised recommendations