Skip to main content

Indirect Nanofabrication

  • Chapter
  • First Online:
Nanofabrication

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hu, W., et al., Sub-10 nm electron beam lithography using cold development of poly(methylmethacrylate). J. Vac. Sci. Technol., 2004. B22(4): p. 1711.

    Google Scholar 

  2. Johnson, C., et al., IBM Tech. Dic. Bull., 1984. 26: p. 4587.

    Google Scholar 

  3. Vettiger, P., et al., Nanometer sidewall lithography by resist silylation. J. Vac. Sci. Technol., 1989. B7(6): p. 1756.

    Google Scholar 

  4. Park, C.W., O.V. Mena, and J. Brugger, Patterning of parallel nanobridge structures by reverse nanostencil lithography using an edge-patterned stencil. Nanotechnology, 2007. 18: p. 044002.

    Article  Google Scholar 

  5. Hsu, D.S.Y., 50 nm linewidth ˜platinum sidewall lithography by effusive-source metal precursor chemical deposition and ion-assisted etching. Appl. Phys. Lett., 1991. 59(17): p. 2192.

    Article  CAS  Google Scholar 

  6. Yu, Z., et al., Fabrication of large area 100 nm pitch grating by spatial frequency doubling and nanoimprint lithography for subwavelength optical applications. J. Vac. Sci. Technol., 2001. B19(6): p. 2816.

    Google Scholar 

  7. Choi, Y.-K., et al., Sublithographic nanofabrication technology for nanocatalysts and DNA chips. J. Vac. Sci. Technol., 2004. B21(6): p. 2951.

    Google Scholar 

  8. Zaborowski, M., et al., Nano-line width control and standards using lateral pattern definition technique. Microelectro. Eng., 2006. 83: pp. 1555–1558.

    Article  CAS  Google Scholar 

  9. Grabiec, P.B., et al., Nano-width lines using lateral pattern definition technique for nanoimprint template fabrication. Microelectron. Eng., 2004. 73–74: pp. 599–603.

    Article  Google Scholar 

  10. Cui, Z., Fabrication of nozzle array by surface moulding technique, in International Microprocesses and Nanotechnology Conference, Digest of Papers. 2002, Tokyo. p. 94.

    Google Scholar 

  11. Ciucci, S., et al., Silicon nanowires fabricated by means of an underetching technique. Microelectron. Eng., 2005. 78–79: pp. 338–342.

    Article  Google Scholar 

  12. Cui, Z., et al., Fabrication of magnetic rings for high density memory devices. Microelectron. Eng., 2002. 61–62: pp. 577–583.

    Article  Google Scholar 

  13. Ravi, T.S., R.B. Marcus, and D. Liu, Oxidation sharpening of silicon tips. J. Vac. Sci. Technol., 1991. B9(6): pp. 2733–2737.

    Google Scholar 

  14. Cho, Y.H., et al., Fabrication of silicon dioxide submicron channels without nanolithography for single biomolecule detection. Nanotechnology, 2007. 18: p. 465303.

    Article  CAS  Google Scholar 

  15. Low-cost chip stretches single molecules. Jan. 2008 [cited; Available from: http://nanotechweb.org/].

  16. Baek, I.-B., J.-H. Yang, and W.-J. Cho, Electron beam lithography patterning of sub-10 nm line using hydrogen silsesquioxane for nanoscale device applications. J. Vac. Sci. Technol., 2005. B23(6): p. 3120.

    Google Scholar 

  17. Reyntjens, S. and R. Puers, A review of focused ion beam applications in microsystem technology. J. Micromech. Microeng., 2001. 11: p. 287.

    Article  CAS  Google Scholar 

  18. Luo, Y. and V. Misra, Large-area long-range ordered anisotropic magnetic nanostructure fabrication by photolithography. Nanotechnology 2006. 17: pp. 4909–4911.

    Article  CAS  Google Scholar 

  19. Steinmann, P. and J.M.R. Weaver, Fabrication of sub-5 nm gaps between metallic electrodes using conventional lithographic techniques. J. Vac. Sci. Technol., 2004. B22(6): p. 3178.

    Google Scholar 

  20. Gazzadi, G.C., et al., Fabrication of 5 nm gap pillar electrodes by electron-beam Pt deposition. J. Vac. Sci. Technol., 2005. B23(2): p. L1.

    Google Scholar 

  21. Hand, A., Post-Litho Shrink Breaks Advanced Barrier. Semiconductor International, 2007. August.

    Google Scholar 

  22. Li, J., et al., Ion-beam sculpting at nanometre length scales. Nature, 2001. 412: p. 166.

    Article  CAS  Google Scholar 

  23. Lo, C.J., T. Aref, and A. Bezryadin, Fabrication of symmetric sub-5 nm nanopores using focused ion and electron beams. Nanotechnology, 2006. 17: pp. 3264–3267.

    Article  CAS  Google Scholar 

  24. Stern, M.B., M.W. Geis, and J.E. Curtin, Nanochannel fabrication for chemical sensors. J. Vac. Sci. Technol., 1997. B15(6): p. 2887.

    Google Scholar 

  25. Zeng, H., Zhiliang, W., and A.D. Feinerman, Fabrication of micro/nano fluidic channels with sacrificial galvanic coupled metals. Nanotechnology, 2006. 17: pp. 3183–3188.

    Article  CAS  Google Scholar 

  26. Blech, V., T. Nobuyuki, and B. Kim, Nanostenciling through a cm 2 -wide silicon membrane. J. Vac. Sci. Technol., 2006. B24(1): p. 55.

    Google Scholar 

  27. Luber, S.M., et al., Nanometre spaced electrodes on a cleaved AlGaAs surface. Nanotechnology, 2005. 16: pp. 1182–1185.

    Article  CAS  Google Scholar 

  28. Austin, M.D., et al., Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography. Appl. Phys. Lett., 2004. 84(26): p. 5299.

    Article  CAS  Google Scholar 

  29. Austin, M.D., et al., 6 nm half-pitch lines and 0.04 μm static random access memory patterns by nanoimprint lithography. Nanotechnology, 2005. 16(8): pp. 1058–1061.

    Article  CAS  Google Scholar 

  30. Hulteen, J. and V.D. RP, Nanosphere lithography: A material general fabrication process for periodic particle array surfaces. J. Vac. Sci. Technol., 1995. A13(3): p. 1553.

    Google Scholar 

  31. Ng, W.N., et al., Nanostructuring GaN using microsphere lithography. J. Vac. Sci. Technol., 2008. B26(1): p. 76.

    Google Scholar 

  32. Wu, W., et al., A deep sub-wavelength process for the formation of highly uniform arrays of nanoholes and nanopillars. Nanotechnology, 2007. 18: p. 485302.

    Article  Google Scholar 

  33. Guo, W., et al., Near-field laser parallel nanofabrication of arbitrary-shaped patterns. Appl. Phys. Lett., 2007. 90: p. 243101.

    Article  Google Scholar 

  34. Barton, J.E. and T.W. Odom, Mass-limited growth in zeptoliter beakers: A general approach for the synthesis of nanocrystal. Nano Lett., 2004. 4: pp. 1525–1528.

    Article  CAS  Google Scholar 

  35. Lin, B.J., The ending of optical lithography and the prospects of its successors. Microelectron. Eng., 2006. 83: pp. 604–613.

    Article  CAS  Google Scholar 

  36. Vladimirsky, Y., et al., Demagnification in proximity X-ray lithography and extensibility to 25 nm by optimizing Fresnel diffraction. J. Phys. D: Appl. Phys., 1999. 32: pp. L114–L118.

    Article  CAS  Google Scholar 

  37. Cumming, D.R.S., et al., Fabrication of 3 nm wires using 100 keV electron beam lithography and poly(methyl methacrylate) resist. Appl. Phys. Lett., 1996. 68(3): p. 322.

    Article  CAS  Google Scholar 

  38. Nagase, T., et al., Maskless fabrication of nanoelectrode structures with nanogaps by using Ga focused ion beams. Microelectron. Eng. 2005. 78–79: pp. 253–259.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Cui, Z. (2008). Indirect Nanofabrication. In: Nanofabrication. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-75577-9_7

Download citation

Publish with us

Policies and ethics