Indirect Nanofabrication

  • Zheng Cui


The nanofabrication technologies introduced in the previous chapters so far have a common feature, that is, the dimension of a structure or pattern is defined directly by lithographic means, whether through a mask (optical lithography or charged particle projection lithography), or through direct patterning (electron beam (e-beam), focused ion beam (FIB), scanning probes), or with a mold (nanoimprint, microcontact printing). The structural dimension is more or less determined by the resolution capability of a particular lithographic technique, though pattern transfer can cause, to some extent, a deviation in the final dimension. Each lithographic technique has its own capability and limitation. Table 7.1summarizes the capabilities of each of these direct nanofabrication techniques introduced in the previous chapters. These figures only serve as references. It is difficult to define the ultimate capability of a particular nanofabrication technique, because the resolution...


Silica Sphere Optical Lithography Nanosphere Lithography Mask Feature Thermal Oxidation Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Hu, W., et al., Sub-10 nm electron beam lithography using cold development of poly(methylmethacrylate). J. Vac. Sci. Technol., 2004. B22(4): p. 1711.Google Scholar
  2. 2.
    Johnson, C., et al., IBM Tech. Dic. Bull., 1984. 26: p. 4587.Google Scholar
  3. 3.
    Vettiger, P., et al., Nanometer sidewall lithography by resist silylation. J. Vac. Sci. Technol., 1989. B7(6): p. 1756.Google Scholar
  4. 4.
    Park, C.W., O.V. Mena, and J. Brugger, Patterning of parallel nanobridge structures by reverse nanostencil lithography using an edge-patterned stencil. Nanotechnology, 2007. 18: p. 044002.CrossRefGoogle Scholar
  5. 5.
    Hsu, D.S.Y., 50 nm linewidth ˜platinum sidewall lithography by effusive-source metal precursor chemical deposition and ion-assisted etching. Appl. Phys. Lett., 1991. 59(17): p. 2192.CrossRefGoogle Scholar
  6. 6.
    Yu, Z., et al., Fabrication of large area 100 nm pitch grating by spatial frequency doubling and nanoimprint lithography for subwavelength optical applications. J. Vac. Sci. Technol., 2001. B19(6): p. 2816.Google Scholar
  7. 7.
    Choi, Y.-K., et al., Sublithographic nanofabrication technology for nanocatalysts and DNA chips. J. Vac. Sci. Technol., 2004. B21(6): p. 2951.Google Scholar
  8. 8.
    Zaborowski, M., et al., Nano-line width control and standards using lateral pattern definition technique. Microelectro. Eng., 2006. 83: pp. 1555–1558.CrossRefGoogle Scholar
  9. 9.
    Grabiec, P.B., et al., Nano-width lines using lateral pattern definition technique for nanoimprint template fabrication. Microelectron. Eng., 2004. 73–74: pp. 599–603.CrossRefGoogle Scholar
  10. 10.
    Cui, Z., Fabrication of nozzle array by surface moulding technique, in International Microprocesses and Nanotechnology Conference, Digest of Papers. 2002, Tokyo. p. 94.Google Scholar
  11. 11.
    Ciucci, S., et al., Silicon nanowires fabricated by means of an underetching technique. Microelectron. Eng., 2005. 78–79: pp. 338–342.CrossRefGoogle Scholar
  12. 12.
    Cui, Z., et al., Fabrication of magnetic rings for high density memory devices. Microelectron. Eng., 2002. 61–62: pp. 577–583.CrossRefGoogle Scholar
  13. 13.
    Ravi, T.S., R.B. Marcus, and D. Liu, Oxidation sharpening of silicon tips. J. Vac. Sci. Technol., 1991. B9(6): pp. 2733–2737.Google Scholar
  14. 14.
    Cho, Y.H., et al., Fabrication of silicon dioxide submicron channels without nanolithography for single biomolecule detection. Nanotechnology, 2007. 18: p. 465303.CrossRefGoogle Scholar
  15. 15.
    Low-cost chip stretches single molecules. Jan. 2008 [cited; Available from:].
  16. 16.
    Baek, I.-B., J.-H. Yang, and W.-J. Cho, Electron beam lithography patterning of sub-10 nm line using hydrogen silsesquioxane for nanoscale device applications. J. Vac. Sci. Technol., 2005. B23(6): p. 3120.Google Scholar
  17. 17.
    Reyntjens, S. and R. Puers, A review of focused ion beam applications in microsystem technology. J. Micromech. Microeng., 2001. 11: p. 287.CrossRefGoogle Scholar
  18. 18.
    Luo, Y. and V. Misra, Large-area long-range ordered anisotropic magnetic nanostructure fabrication by photolithography. Nanotechnology 2006. 17: pp. 4909–4911.CrossRefGoogle Scholar
  19. 19.
    Steinmann, P. and J.M.R. Weaver, Fabrication of sub-5 nm gaps between metallic electrodes using conventional lithographic techniques. J. Vac. Sci. Technol., 2004. B22(6): p. 3178.Google Scholar
  20. 20.
    Gazzadi, G.C., et al., Fabrication of 5 nm gap pillar electrodes by electron-beam Pt deposition. J. Vac. Sci. Technol., 2005. B23(2): p. L1.Google Scholar
  21. 21.
    Hand, A., Post-Litho Shrink Breaks Advanced Barrier. Semiconductor International, 2007. August.Google Scholar
  22. 22.
    Li, J., et al., Ion-beam sculpting at nanometre length scales. Nature, 2001. 412: p. 166.CrossRefGoogle Scholar
  23. 23.
    Lo, C.J., T. Aref, and A. Bezryadin, Fabrication of symmetric sub-5 nm nanopores using focused ion and electron beams. Nanotechnology, 2006. 17: pp. 3264–3267.CrossRefGoogle Scholar
  24. 24.
    Stern, M.B., M.W. Geis, and J.E. Curtin, Nanochannel fabrication for chemical sensors. J. Vac. Sci. Technol., 1997. B15(6): p. 2887.Google Scholar
  25. 25.
    Zeng, H., Zhiliang, W., and A.D. Feinerman, Fabrication of micro/nano fluidic channels with sacrificial galvanic coupled metals. Nanotechnology, 2006. 17: pp. 3183–3188.CrossRefGoogle Scholar
  26. 26.
    Blech, V., T. Nobuyuki, and B. Kim, Nanostenciling through a cm 2 -wide silicon membrane. J. Vac. Sci. Technol., 2006. B24(1): p. 55.Google Scholar
  27. 27.
    Luber, S.M., et al., Nanometre spaced electrodes on a cleaved AlGaAs surface. Nanotechnology, 2005. 16: pp. 1182–1185.CrossRefGoogle Scholar
  28. 28.
    Austin, M.D., et al., Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography. Appl. Phys. Lett., 2004. 84(26): p. 5299.CrossRefGoogle Scholar
  29. 29.
    Austin, M.D., et al., 6 nm half-pitch lines and 0.04 μm static random access memory patterns by nanoimprint lithography. Nanotechnology, 2005. 16(8): pp. 1058–1061.CrossRefGoogle Scholar
  30. 30.
    Hulteen, J. and V.D. RP, Nanosphere lithography: A material general fabrication process for periodic particle array surfaces. J. Vac. Sci. Technol., 1995. A13(3): p. 1553.Google Scholar
  31. 31.
    Ng, W.N., et al., Nanostructuring GaN using microsphere lithography. J. Vac. Sci. Technol., 2008. B26(1): p. 76.Google Scholar
  32. 32.
    Wu, W., et al., A deep sub-wavelength process for the formation of highly uniform arrays of nanoholes and nanopillars. Nanotechnology, 2007. 18: p. 485302.CrossRefGoogle Scholar
  33. 33.
    Guo, W., et al., Near-field laser parallel nanofabrication of arbitrary-shaped patterns. Appl. Phys. Lett., 2007. 90: p. 243101.CrossRefGoogle Scholar
  34. 34.
    Barton, J.E. and T.W. Odom, Mass-limited growth in zeptoliter beakers: A general approach for the synthesis of nanocrystal. Nano Lett., 2004. 4: pp. 1525–1528.CrossRefGoogle Scholar
  35. 35.
    Lin, B.J., The ending of optical lithography and the prospects of its successors. Microelectron. Eng., 2006. 83: pp. 604–613.CrossRefGoogle Scholar
  36. 36.
    Vladimirsky, Y., et al., Demagnification in proximity X-ray lithography and extensibility to 25 nm by optimizing Fresnel diffraction. J. Phys. D: Appl. Phys., 1999. 32: pp. L114–L118.CrossRefGoogle Scholar
  37. 37.
    Cumming, D.R.S., et al., Fabrication of 3 nm wires using 100 keV electron beam lithography and poly(methyl methacrylate) resist. Appl. Phys. Lett., 1996. 68(3): p. 322.CrossRefGoogle Scholar
  38. 38.
    Nagase, T., et al., Maskless fabrication of nanoelectrode structures with nanogaps by using Ga focused ion beams. Microelectron. Eng. 2005. 78–79: pp. 253–259.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Zheng Cui
    • 1
  1. 1.Council for the Central Laboratory of the Research Councils, Rutherford Appleton LaboratoryDIDCOTUK

Personalised recommendations