Nanoscale Pattern Transfer

  • Zheng Cui


The lithography process is not finished until a functional pattern structure has been made on or into a substrate material. There are of course many ways of making a pattern directly out of a material. Some of them have already been introduced in previous chapters. For example, focused ion beam (FIB) can directly sputter etch a nanoscale pattern into a substrate material, or make a structure on top of a substrate by gas-assisted deposition of a material. Electron beam (e-beam), though not able to sputter etch, can also deposit materials with gases. Both of the techniques do not need a mask, because the charged particle beams can be focused and scanned into any patterns, as described in Chapter 3. The same is true for patterning by a scanning probe. Etching or deposition of materials can be done by a probe interacting with a substrate, which has been explained in detail in Chapter 4. The present chapter focuses on the processes whereby a mask pattern is transferred into...


Etch Rate Radio Frequency Power Mask Pattern Pattern Transfer Plasma Sputtering 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Elshabini-Riad, A.A.R. and F.D. Barlow III, Thin Film Technology Handbook. 1997, McGraw-Hill.Google Scholar
  2. 2.
    Chambers, A., R.K. Fitch, and B.S. Halliday, Basic Vacuum Technology 2nd ed. 1998, CRC Press.Google Scholar
  3. 3.
    Chapman, B., Glow Discharge Processes. 1980, John Wiley & Sons, Inc.Google Scholar
  4. 4.
    Rossnagel, S.M., Sputter deposition for semiconductor manufacturing. IBM J. Res. Develop., 1999. 43(1/2): p. 163.CrossRefGoogle Scholar
  5. 5.
    Ilataakis, M., Canavcuo, and I.M. Shaw, Single-step optical lift-off process. IBM J. Res. Develop., 1980. 24(4): pp. 452–460.CrossRefGoogle Scholar
  6. 6.
    Beaumont, S.P., et al., Sub-20-nm-wide metal lines by electron-beam exposure of thin poly(methyl methacrylate) films and liftoff. Appl. Phys. Lett., 1981. 38(6): pp. 436–439.CrossRefGoogle Scholar
  7. 7.
    Chou, S.Y., et al., Sub-10 nm imprint lithography and applications. J. Vac. Sci. Technol., 1997. B15(6): p. 2897.Google Scholar
  8. 8.
    Cui, Z., Focused ion beam technology, in Micro-Nanofabrication Technologies and Applications. 2006, Springer.Google Scholar
  9. 9.
    LOR product information available from Microchem Inc. (web link:
  10. 10.
    Chen, Y., K. Peng, and Z. Cui, A lift-off process for high resolution patterns using PMMA/LOR resist stack. Microelectronic Engineering, 2004. 73/74: p. 278.CrossRefGoogle Scholar
  11. 11.
    Xia, X., et al., Fabrication of near-infrared and optical meta-materials on insulating substrates by lift-off using PMMA/Al stack. Microelectronic Engineering, 2007. 84(5–8): pp. 1144–1147.CrossRefGoogle Scholar
  12. 12.
    Radulescu, F., et al., Introduction of Complete Sputtering Metallization in Conjunction with CO 2 Snow Lift-Off for High Volume GaAs Manufacturing, in Proc. GaAs MANTECH Conference, 2002, San Diego.Google Scholar
  13. 13.
    Voigt, A., et al., A single layer negative tone lift-off photo resist for patterning a magnetron sputtered Ti/Pt/Au contact system and for solder bumps. Microelectronic Engineering, 2005. 78–79: pp. 503–508.CrossRefGoogle Scholar
  14. 14.
    Yang, H., et al., Electron beam lithography of HSQ/PMMA bilayer resists for negative tone lift-off process. Microelectronic Engineering, 2008. 85(5–6): p. 814.Google Scholar
  15. 15.
    Romankiw, L.T., L.M. Croll, and M. Hatzakis, Batch fabricated thin film magnetic recording head. IEEE Trans. Mag., 1970. 6(4): p. 729.Google Scholar
  16. 16.
    Romankiw, L.T. and E.J.M. O'Sullivan, Plating techniques, in Handbook of Micolithography, Micromachining and Microfabrication, P. Rai-choudhury, Editor. 1997, SPIE Optical Engineering Press & IEE.Google Scholar
  17. 17.
    Jiang, M., Processing considerations for CMP on thin-film head wafers. Solid State Technology, 2004 (September).Google Scholar
  18. 18.
    Jackson, R.L., et al., Processing and integration of copper interconnects. Solid State Technology 1998 (March).Google Scholar
  19. 19.
    Becker, E.W., et al., Fabrication of microstructures with high aspect ratios and great structural heights by synchrotron radiation lithography, galvanoforming and plastic moulding (LIGA process). Microelectronic Engineering, 1986. 4: p. 35.CrossRefGoogle Scholar
  20. 20.
    Cui, Z. and R.A. Lawes, Low cost fabrication of micromechanical systems. Microelectronic Engineering, 1997. 35: p. 389.Google Scholar
  21. 21.
    Cui, Z., et al., High sensitive magnetically actuated micromirrors for magnetic field measurement. Sensors and Actuators A: Physical, 2007. 138(1): pp. 145–150.Google Scholar
  22. 22.
    Attwood, D.T., Soft X-Rays and Extreme Ultraviolet Radiation. 2000, Cambridge University Press.Google Scholar
  23. 23.
    Chao, W., et al., Soft X-ray microscopy at a spatial resolution better than 15 nm. Nature, 2005. 435: p. 1210.CrossRefGoogle Scholar
  24. 24.
    Simon, G., et al., Electroplating: an alternative transfer technology in the 20 nm range. Microelectronic Engineering, 1997. 35: pp. 51–54.CrossRefGoogle Scholar
  25. 25.
    Anderson, E.H., et al., Nanofabrication and diffractive optics for high-resolution X-ray applications. J. Vac. Sci. Technol., 2000. B18: p. 2970.Google Scholar
  26. 26.
    Haatainen, T., et al., Nickel stamp fabrication using step & stamp imprint lithography. Microelectronic Engineering, 2006. 83: pp. 948–954.CrossRefGoogle Scholar
  27. 27.
    Wolf, S., Introduction to dual-damascene interconnect processes. Silicon Processing for the VLSI Era, 2004. 4: pp. 674–679.Google Scholar
  28. 28.
    Luethi, R., et al., Parallel nanodevice fabrication using a combination of shadow mask and scanning probe methods. Appl. Phys. Lett., 1999. 75(9): p. 1314.CrossRefGoogle Scholar
  29. 29.
    Brugger, J., et al., Resistless patterning of sub-micron structures by evaporation through nanostencils. Microelectronic Engineering, 2000. 53: p. 403.CrossRefGoogle Scholar
  30. 30.
    Kim, G.M., M.A.F. Van den Boogaart, and J. Brugger, Fabrication and application of a full wafer size micro/nanostencil for multiple length scale surface patterning. Microelectronic Engineering, 2003. 67–68: p. 609.CrossRefGoogle Scholar
  31. 31.
    Arcamone, J., et al., Dry etching for the correction of gap-induced blurring and improved pattern resolution in nanostencil lithography. J. Micro/Nanolith. MEMS MOEMS, 2007. 6(1): p. 013005.CrossRefGoogle Scholar
  32. 32.
    Lishchynska, M., et al., Predicting mask distortion, clogging and pattern transfer for stencil lithography. Microelectronic Engineering, 2007. 84: pp. 42–53.CrossRefGoogle Scholar
  33. 33.
    Cui, Z., Etching Technology, in Micro-Nanofabrication Technologies and Applications. 2006, Springer.Google Scholar
  34. 34.
    Biebuyck, H.A., et al., Lithography beyond light: Microcontact printing with monolayer resists. IBM J. Res. Develop., 1997. 41(1/2): p. 159.CrossRefGoogle Scholar
  35. 35.
    Xia, Y. and G.M. Whitesides, Soft lithography. Angew. Chem. Int. Ed., 1998. 37: pp. 550–575.CrossRefGoogle Scholar
  36. 36.
    Kendall, D.L. and R.A. Shoultz, Wet chemical etching of silicon and SiO 2 and ten challenges for micromachiners, in Handbook of Microlithography, Micromachining and Microfabrication, P. Rai-Coudhury, Editor. 1997, SPIE Optical Engineering Press & IEE.Google Scholar
  37. 37.
    IntelliSuite™ from IntelliSense Software Corp. (web link:
  38. 38.
    Li, B., et al., Fabrication and characterization of patterned single-crystal silicon nanolines. Nano Lett., 2008. 8(1): pp. 92–98.CrossRefGoogle Scholar
  39. 39.
    Wieser, U., et al., Nanoscale patterning of Si/SiGe heterostructures by electron-beam lithography and selective wet-chemical etching. Semicond. Sci. Technol., 2000. 15: pp. 862–867.CrossRefGoogle Scholar
  40. 40.
    Zhang, Y.Y., et al., Fabrication of silicon-based multilevel nanostructures via scanning probe oxidation and anisotropic wet etch. Nanotechnology, 2005. 16: pp. 422–428.CrossRefGoogle Scholar
  41. 41.
    Sugimura, H. and N. Nakagiri, Fabrication of silicon nanostructures through scanning probe anodization followed by chemical etching. Nanotechnology, 1995. 6: pp. 29–33.CrossRefGoogle Scholar
  42. 42.
    Hitchon, W.N.G., Plsama Processes for Semiconductor Fabrication. Cambridge Studies in Semiconductor Physics and Microelectronic Engineering. 1999, Cambridge University Press.Google Scholar
  43. 43.
    Wilkinson, C.D.W. and M. Rahman, Dry etching and sputtering. Phil. Trans. R. Soc. Lond., 2003. A362: pp. 125–138.Google Scholar
  44. 44.
    Ibbotson, D.E., Plasma and gaseous etching of compounds of Groups III–V. Pure & Appl. Chem., 1988. 60(5): pp. 703–708.CrossRefGoogle Scholar
  45. 45.
    Peters, L., Plasma Etch Chemistry: The Untold Story. Semiconductor International, 1992. 15(6): p. 66.Google Scholar
  46. 46.
    Tian, W.-C., J.W. Weigold, and S.W. Pang, Comparison of Cl 2 and F-based dry etching for high aspect ratio Si microstructures etched with an inductively coupled plasma source. J. Vac. Sci. Technol., 2000. B18(4): p. 1890.Google Scholar
  47. 47.
    Coburn, J.W. and H.F. Winters, Ion- and electron-assisted gas-surface chemistry – An important effect in plasma etching. J. Appl. Phys., 1979. 50(5): p. 3189.CrossRefGoogle Scholar
  48. 48.
    Cardinaud, C., M.-C. Peignon, and P.-Y. Tessier, Plasma etching: principles, mechanisms, application to micro- and nano-technologies. Appl. Surf. Sci., 2000. 164: pp. 72–83.CrossRefGoogle Scholar
  49. 49.
    Wang, X., et al., Fabrication of nanoimprint template in Si with high etch rate by non-switch DRIE process. Microelectronic Engineering, 2008. 85(5–6): p. 1015.Google Scholar
  50. 50.
    Tao, J., et al., A systematic study of dry etch process for profile control of silicon tips. Microelectronic Engineering, 2005. 78–79: p. 147–151.CrossRefGoogle Scholar
  51. 51.
    Grigoropoulos, S., et al., Highly anisotropic silicon reactive ion etching for nanofabrication using mixtures of SF6/CHF3 gases. J. Vac. Sci. Technol., 1997. B15(3): p. 640.Google Scholar
  52. 52.
    Chen, Y., et al., Nanoimprint lithography for planar chiral photonic meta-materials. Microelectronic Engineering, 2005. 78–79: pp. 612–617.CrossRefGoogle Scholar
  53. 53.
    Walker, M., Comparison of Bosch and cryogenic processes for patterning high aspect ratio features in silicon. SPIE, 2001. 4407: p. 89.CrossRefGoogle Scholar
  54. 54.
    Tachi, S., K. Tsujimoto, and S. Okudaira, Low-temperature reactive ion etching and microwave plasma etching of silicon. Appl. Phys. Lett., 1988. 52(8): pp. 616–618.CrossRefGoogle Scholar
  55. 55.
    Schutz, R.J., Reactive plasma etching, in VLSI Technology, S.M. Sze, Editor. 1988, McGraw-Hill Book Co.Google Scholar
  56. 56.
    Doe, P., Bosch: Deep etch tools on target for 100 µm/min throughput in 2–3 years. Solid State Technology, 2007 (September).Google Scholar
  57. 57.
    Laermer, E. and A. Schilp, Method of anisotropically etching silicon (US Patent 5,501,893), 1996.Google Scholar
  58. 58.
    Ayon, A.A., R.L. Bayt, and K.S. Breuer, Deep reactive ion etching: a promising technology for micro- and nanosatellites. Smart Mater. Struct., 2001. 10: pp. 1135–1144.CrossRefGoogle Scholar
  59. 59.
    Choi, C.-H. and C.-J. Kim. Fabrication of silicon nanostructures with various sidewall profiles and sharp tips, in Proceedings of Transducers'05: The 13th International Conference on Solid-State Sensors, Actuators and Microsystems. 2005, Seoul, IEEE.Google Scholar
  60. 60.
    Nilsson, D., S. Jensen, and A. Menon, Fabrication of silicon molds for polymer optics J. Micromech. Microeng., 2003. 13: p. S57–S61.CrossRefGoogle Scholar
  61. 61.
    Agarwal, R., S. Samson, and S. Bhansali, Fabrication of vertical mirrors using plasma etch and KOH:IPA polishing. J. Micromech. Microeng., 2007. 17: pp. 26–35.CrossRefGoogle Scholar
  62. 62.
    Teo, S.H.G., et al., High resolution and aspect ratio two-dimensional photonic band-gap crystal. J. Vac. Sci. Technol., 2004. B 22(6): p. 2540.Google Scholar
  63. 63.
    Kawata, H., M. Yasuda, and Y. Hirai, Fabrication of Si mold with smooth side wall by new plasma etching process. Microelectronic Engineering, 2007. 84: pp. 1140–1143.CrossRefGoogle Scholar
  64. 64.
    Wang, X., et al., Fabrication of nanoimprint template in Si with high etch rate by non-switch DRIE process, in 33rd International Conference on Micro- and Nano-Engineering. 2007, Copenhagen, Denmark.Google Scholar
  65. 65.
    Welch, C.C., et al., Silicon etch process options for micro- and nanotechnology using inductively coupled plasmas. Microelectronic Engineering, 2006. 83: pp. 1170–1173.CrossRefGoogle Scholar
  66. 66.
    Thick SiO 2 etching. [cited; Available from: Adixen].
  67. 67.
    Deng, L., et al., ICP etching of InP and related materials using photoresist as mask. Proc. SPIE, 2004. 5280: pp. 838–843.CrossRefGoogle Scholar
  68. 68.
    Gottscho, R.A. and C.W. Jurgensen, Microscopic uniformity in plasma etching. J. Vac. Sci. Technol., 1992. B10(5): p. 2133.Google Scholar
  69. 69.
    Karttunen, J., J. Kiihamäki, and S. Franssila, Loading effects in deep silicon etching. Proc. SPIE, 2000. 4174: pp. 90–97.CrossRefGoogle Scholar
  70. 70.
    Chen, A., et al., Fabrication of sub-100 nm patterns in SiO 2 templates by electron-beam lithography for the growth of periodic III–V semiconductor nanostructures. Nanotechnology, 2006. 17: pp. 3903–3908.Google Scholar
  71. 71.
    Feurprier, Y., et al., Microloading effect in ultrafine SiO 2 hole/trench etching. J. Vac. Sci. Technol., 1999. A17(4): p. 1556.Google Scholar
  72. 72.
    Dalton, T.J., J.C. Arnold, and H.H. Sawin, Microtrench formation in polysilicon plasma etching over thin gate oxide. J. Electrochem. Soc., 1993. 140(8): p. 2395.CrossRefGoogle Scholar
  73. 73.
    Hoekstra, R.J. and M.J. Kushner, Microtrenching resulting from specular reflection during chlorine etching of silicon. J. Vac. Sci. Technol., 1998. B16(4): p. 2102.Google Scholar
  74. 74.
    Schaepkens, M. and G.S. Oehrlein, Asymmetric microtrenching during inductively coupled plasma oxide etching in the presence of a weak magnetic field. Appl. Phys. Lett., 1998. 72(11): p. 1293.CrossRefGoogle Scholar
  75. 75.
    Watanabe, M., D.M. Shaw, and G.J. Collins, Reduction of microtrenching and island formation in oxide plasma etching by employing electron beam charge neutralization. Appl. Phys. Lett., 2001. 79(22): p. 2698.CrossRefGoogle Scholar
  76. 76.
    Kim, J., et al., Robust SOI process without footing and its application to ultra high-performance microgyroscopes. Sensors and Actuators A: Physical, 2004. 114: pp. 236–243.Google Scholar
  77. 77.
    Lasky, J.B., Wafer bonding for silicon-on-insulator technology. Appl. Phys. Lett., 1986. 48: pp. 78–80.CrossRefGoogle Scholar
  78. 78.
    Hwang, G.S. and K.P. Giapis, On the origin of the notching effect during etching in uniform high density plasmas. J. Vac. Sci. Technol., 1997. B15(1): p. 70.Google Scholar
  79. 79.
    Kim, C.-H. and Y.-K. Kim, Prevention method of a notching caused by surface charging in silicon reactive ion etching. J. Micromech. Microeng., 2005. 15: pp. 358–361.CrossRefGoogle Scholar
  80. 80.
    Laermer, F. and A. Urban, Challenges, developments and applications of silicon deep reactive ion etching. Microelectronic Engineering, 2003. 67–68: pp. 349–355.CrossRefGoogle Scholar
  81. 81.
    Wilkinson, C.D.W. and M. Rahman, Dry etching and sputtering. Phil. Trans. R. Soc. Lond., 2004. A362: pp. 125–138.CrossRefGoogle Scholar
  82. 82.
    Li, X., et al., A low damage RIE process for the fabrication of compound semiconductor based transistors with sub-100 nm tungsten gates. Microelectronic Engineering, 2006. 83: pp. 1159–1162.CrossRefGoogle Scholar
  83. 83.
    Maat, S., et al., Ultrathin CoPt-pinned current perpendicular to the plane spin valves. J. Appl. Phys., 2005. 98(11).Google Scholar
  84. 84.
    Moneck, M.T., et al., Fabrication of flyable perpendicular discrete track media. IEEE Trans. Magn., 2007. 43(6): pp. 2127–2129.CrossRefGoogle Scholar
  85. 85.
    Ion beam milling information. [cited; Available from:].
  86. 86.
    Wang, X., et al., Reactive ion beam etching of HfO 2 film and removal of sidewall redeposition. J. Vac. Sci. Technol., 2006. A24(4): p. 1067.Google Scholar
  87. 87.
    Stade, F., et al., Fabrication of metallic nanostructures for investigating plasmon-induced field enhancement. Microelectronic Engineering, 2007. 84: pp. 1589–1592.CrossRefGoogle Scholar
  88. 88.
    Walsh, M.E., et al., Optimization of a lithographic and ion beam etching process for nanostructuring magnetoresistive thin film stacks. J. Vac. Sci. Technol., 2000. B 18(6): p. 3539.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Zheng Cui
    • 1
  1. 1.Rutherford Appleton LaboratoryDidcotUK

Personalised recommendations