Nanofabrication by Replication

  • Zheng Cui


Making sub-100 nm structures can also be done in a simple way, that is, by replication. As long as there is a mold, or a stamp, or a master, which has sub-100 nm surface relief structures, these nanostructures can be replicated in the similar fashion as stamping out millions of compact disks (CDs). This was the idea proposed in 1995 when Stephen Y. Chou first reported sub-25 nm holes made in polymethylmethacrylate (PMMA) polymer with an imprinting mold and he coined the word “nanoimprint” [1]. Nanoimprinting lithography (NIL) technology has since undergone phenomenal growth. There is an annual international conference on NIL since 2002 (International Conference on Nanoimprint and Nanoprint Technology, “NNT”). Many other conferences have dedicated sessions on NIL. Several commercial companies have been established, ranging from producing nanoimprinting tools, nanoimprint stamps, to exploring commercial applications of NIL technology.

Originally, NIL was proposed to replace...


Mold Cavity Residual Layer Optical Lithography PDMS Stamp Alignment Mark 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Chou, S.Y., P.R. Krauss, and P.J. Renstrom, Imprint of sub-25 nm vias and trenches in polymers. Appl. Phys. Lett., 1995. 67(21): pp. 3114–3116.CrossRefGoogle Scholar
  2. 2.
    Chou, S.Y., et al., Sub-10 nm imprint lithography and applications. J. Vac. Sci. Technol., 1997. B15(6): p. 2897.Google Scholar
  3. 3.
    International Technology Roadmap for Semiconductors. [cited; Available from:].
  4. 4.
    Torres, C.M.S., Alternative lithography - Unleashing the Potentials of Nanotechnology. 2003, New York: Kluwer Academic/Plenum Publisher.Google Scholar
  5. 5.
    Heidari, B., et al., Large scale nanolithography using nanoimprint lithography. J. Vac. Sci. Technol., 1999. B17(6): p. 2961.Google Scholar
  6. 6.
    Haatainen, T., et al., Nickel stamp fabrication using step & stamp imprint lithography. Microelectron. Eng., 2006. 83: pp. 948–954.CrossRefGoogle Scholar
  7. 7.
    Haffner, M., et al., Simple high resolution nanoimprint-lithography. Microelectron. Eng., 2007. 84: pp. 937–939.CrossRefGoogle Scholar
  8. 8.
    Bird, R.B., R.C. Amstrong, and O. Hassager, Fluid mechanics, in Dynamics of Polymeric Liquids, 1977, John Wiley & Sons.Google Scholar
  9. 9.
    Schift, H. and L. Heyderman, Nanorheology: Squeeze flow in hot embossing of thin films, in Alternative Lithography, C.M.S. Torres, Editor. 2003, Kluwer Academic.Google Scholar
  10. 10.
    Halary, J.L., et al., J. Polym. Sci. (B): Polym. Phys., 1991. 29: p. 933.CrossRefGoogle Scholar
  11. 11.
    Hoffmann, T., Viscoelastic properties of polymers: Relevance for hot embossing lithography, in Alternative Lithography, C.M.S. Torres, Editor. 2003, Kluwer Academic.Google Scholar
  12. 12.
    Scheer, H.C. and A.E. Al, Problems of the nanoimprinting technique for nanometer scale pattern definition. J. Vac. Sci. Technol., 1998. B16(6): p. 3917.Google Scholar
  13. 13.
    Landis, S., et al., Stamp design effect on 100 nm feature size for 8 inch nanoImprint lithography. Nanotechnology, 2006. 17: pp. 2701–2709.CrossRefGoogle Scholar
  14. 14.
    Cui, B. and T. Veres, Pattern replication of 100 nm to millimeter-scale features by thermal nanoimprint lithography. Microelectron. Eng., 2006. 83: pp. 902–905.CrossRefGoogle Scholar
  15. 15.
    Schulz, H., et al., Impact of molecular weight of polymers and shear rate effects for nanoimprint lithography. Microelectron. Eng., 2006. 83: pp. 259–280.CrossRefGoogle Scholar
  16. 16.
    Nanonex Corp. [cited; Available from:].
  17. 17.
    Microresist GmbH. [cited; Available from:].
  18. 18.
    Bogdanski, N., et al., Structure size dependent recovery of thin polystyrene layers in thermal imprint lithography. Microelectron. Eng., 2007. 84: pp. 860–863.CrossRefGoogle Scholar
  19. 19.
    Workum, K.V. and J.J.D. Pablo, Nano Lett., 2003. 3: p. 1405.CrossRefGoogle Scholar
  20. 20.
    Ro, H., et al., Evidence for internal stresses induced by nanoimprint lithography. J. Vac. Sci. Technol., 2006. B24(6): p. 2973.Google Scholar
  21. 21.
    Ramachandran, S., et al., Deposition and patterning of diamondlike carbon as antiwear nanoimprint templates. J. Vac. Sci. Technol., 2006. B24(6): p. 2993Google Scholar
  22. 22.
    Chou, S.Y., P.R. Krauss, and P.J. Renstrom, Nanoimprint lithography. J. Vac. Sci. Technol., 1996. B14(6): p. 4129.Google Scholar
  23. 23.
    Konishi, T., et al., Multi-layered resist process in nanoimprint lithography for high aspect ratio pattern. Microelectron. Eng., 2006. 83: pp. 869–872.CrossRefGoogle Scholar
  24. 24.
    Zhang, W. and S.Y. Chou, Multilevel imprinting lithography with submicron alignment over 4 in. Si wafers. Appl. Phys. Lett., 2001. 79(6): p. 845.CrossRefGoogle Scholar
  25. 25.
    Tan, H., et al., Current status of Nanonex nanoimprint solutions. SPIE, 2004. 5374: pp. 213–221.CrossRefGoogle Scholar
  26. 26.
    Suss MicroTech. [cited; Available from:].
  27. 27.
    Ahopelto, J. and T. Haatanien, Step and stamp imprint lithography, in Alternative Lithography, C.M.S. Torres, Editor. 2003, Kluwer Academic.Google Scholar
  28. 28.
    Chen, Y., et al., A study of pattern placement error by thermal expansions in nanoimprint lithography. J. Microlitho. Microfab. Microsys., 2006. 5 (1).Google Scholar
  29. 29.
    Lebib, A., et al., Room temperature and low pressure nanoimprint lithography. Microelectron. Eng., 2002. 61–62: p. 371.CrossRefGoogle Scholar
  30. 30.
    Nakamatsu, K. and S. Matsui, Room-temperature nanoimprint and nanocontact technologies, in Nanomanufacturing Handbook, A. Busnaina, Editor. 2007, CRC Press.Google Scholar
  31. 31.
    Tao, J., et al., Room temperature nanoimprint lithography using a bilayer of HSQ/PMMA resist stack. Microelectron. Eng., 2005. 78–79: pp. 665–669.CrossRefGoogle Scholar
  32. 32.
    Matsui, S., et al., J. Vac. Sci. Technol., 2001. B19: p. 2801.Google Scholar
  33. 33.
    Lu, Y., et al., Patterning layered polymeric multilayer films by room-temperature nanoimprint lithography. Macromol. Rapid Comm., 2006. 27(7): pp. 505–510.CrossRefGoogle Scholar
  34. 34.
    Haisma, J., et al., Mold-assisted nanolithography: A process for reliable pattern replication. J. Vac. Sci. Technol., 1996. B14: p. 4124.Google Scholar
  35. 35.
    Voisin, P., et al., High-resolution fused silica mold fabrication for UV-nanoimprint. Microelectron. Eng., 2007. 84: pp. 916–920.CrossRefGoogle Scholar
  36. 36.
    Min, J., et al., Effect of sidewall properties on the bottom microtrench during SiO 2 etching in a CF4 plasma. J. Vac. Sci. Technol., 2005. B23(2): p. 425.Google Scholar
  37. 37.
    Cui, Z., Etching technology, in Micro-Nanofabrication Technologies and Applications, 2006, Springer.Google Scholar
  38. 38.
    Dauksher, W.J., et al., Step and flash imprint lithography template characterization from an etch perspective. J. Vac. Sci. Technol., 2003. B21(6): p. 2771.Google Scholar
  39. 39.
    Plachetka, U., et al., Wafer scale patterning by soft UV-nanoimprint lithography. Microelectron. Eng., 2004. 73–74: pp. 167–171.CrossRefGoogle Scholar
  40. 40.
    Schmid, G.M., et al., Template fabrication for the 32 nm node and beyond. Microelectron. Eng., 2007. 84: pp. 853–859.CrossRefGoogle Scholar
  41. 41.
    Bender, M., et al., Status and prospects of UV-nanoimprint technology. Microelectron. Eng., 2006. 83: pp. 827–830.CrossRefGoogle Scholar
  42. 42.
    Plachetka, U., et al., Comparison of multilayer stamp concepts in UV-NIL. Microelectron. Eng., 2006. 83: pp. 944–947.CrossRefGoogle Scholar
  43. 43.
    Kawaguchi, Y., F. Nonaka, and Y. Sanada, Fluorinated materials for UV nanoimprint lithography. Microelectron. Eng., 2007. 84: pp. 973–976.CrossRefGoogle Scholar
  44. 44.
    Beck, M. and B. Heidari, Nanoimprint lithography for high volume HDI manufacturing. OnBoard Technology, 2006. September p. 52.Google Scholar
  45. 45.
    Wang, X., et al., High density patterns fabricated in SU-8 by UV curing nanoimprint. Microelectron. Eng., 2007. 84(872–876).CrossRefGoogle Scholar
  46. 46.
    Schmitt, H. and C. Lehrer, UV polymers for nanoimprint lithography, presentation at 2nd FORNEL Workshop on Nanoelectronics March 2006.Google Scholar
  47. 47.
    Bender, M., et al., Multiple imprinting in UV-based nanoimprint lithography: Related material issues. Microelectron. Eng., 2002. 61–62: pp. 407–413.CrossRefGoogle Scholar
  48. 48.
    Vogler, M., et al., Development of a novel, low-viscosity UV-curable polymer system for UV-nanoimprint lithography. Microelectron. Eng., 2007. 84: pp. 984–988.CrossRefGoogle Scholar
  49. 49.
    Voisin, P., et al., Characterisation of ultraviolet nanoimprint dedicated resists. Microelectron. Eng., 2007. 84: pp. 967–972.CrossRefGoogle Scholar
  50. 50.
    Guo, L.J., Nanoimprint lithography: Methods and material requirements. Adv. Mater., 2007. 19: pp. 495–513.CrossRefGoogle Scholar
  51. 51.
    Le, N.V., et al., Selective dry etch process for step and flash imprint lithography. Microelectron. Eng., 2005. 78–79: pp. 464–473.CrossRefGoogle Scholar
  52. 52.
    Colburn, M., et al., Step and flash imprint lithography: A new approach to high-resolution patterning. Proc. SPIE, 1999. 3676: p. 379.CrossRefGoogle Scholar
  53. 53.
    Resnick, D.J., S.V. Sreenivasan, and C.G. Willson, Step & flash imprint lithography. Mater. Today, 2005. 8(2): pp. 34–42.CrossRefGoogle Scholar
  54. 54.
    Molecule Imprint Corp. [cited; Available from:].
  55. 55.
    Melliar-Smith, M., Lithography beyond 32 nm – a role for imprint?, Available at
  56. 56.
    Murthy, S., et al., S-FIL technology: cost of ownership case study. Proc. SPIE, 2005. 5751: pp. 964–975.CrossRefGoogle Scholar
  57. 57.
    Choi, B.J., et al., Layer-to-layer alignment for step and flash imprint lithography. Proc. SPIE, 2001. 4343: pp. 436–442.CrossRefGoogle Scholar
  58. 58.
    Moel, A., et al., Novel on-axi interferometric alignment method with sub-10 nm precision. J. Vac. Sci. Technol., 1993. B11(6): p. 2191.Google Scholar
  59. 59.
    Muhlberger, M., et al., A Moiré method for high accuracy alignment in nanoimprint lithography. Microelectron. Eng., 2007. 84: pp. 925–927.CrossRefGoogle Scholar
  60. 60.
    Li, W.W.N. and S.Y. Chou, Sub-20-nm alignment in nanoimprint lithography using Moiré Fringe. Nano Lett., 2006. 6(11): pp. 2626–2629.CrossRefGoogle Scholar
  61. 61.
    Cheng, X. and L.J. Guo, One-step lithography for various size patterns with a hybrid mask-mold. Microelectron. Eng., 2004. 71: pp. 288–293.CrossRefGoogle Scholar
  62. 62.
    Guo, L.J., Recent progress in nanoimprint technology and its applications. J. Phys. D: Appl. Phys., 2004. 37: pp. R123–R141.CrossRefGoogle Scholar
  63. 63.
    Huang, X.D., et al., Reversal imprinting by transferring polymer from mold to substrate. J. Vac. Sci. Technol., 2002. B 20: p. 2872Google Scholar
  64. 64.
    Kehagias, N., et al., Three-dimensional polymer structures fabricated by reversal ultraviolet-curing imprint lithography. J. Vac. Sci. Technol., 2005. B 23(6): p. 2954.Google Scholar
  65. 65.
    Sogo, K., et al., Reproduction of fine structures by nanocasting lithography. Microelectron. Eng., 2007. 84: pp. 909–911.CrossRefGoogle Scholar
  66. 66.
    Yang, B. and S.W. Pang, Multiple level nanochannels fabricated using reversal UV nanoimprint. J. Vac. Sci. Technol., 2006. B 24(6): p. 2984.Google Scholar
  67. 67.
    Yoshikawa, T., et al., Fabrication of 1/4 wave plate by nanocasting lithography. J. Vac. Sci. Technol., 2005. B 23(6): p. 2939.Google Scholar
  68. 68.
    Hirai, Y., et al., Fine pattern transfer by nanocasting lithography. Microelectron. Eng., 2005. 78–79: p. 641.CrossRefGoogle Scholar
  69. 69.
    Bao, L.R., et al., Nanoimprinting over topography and multilayers three-dimensional printing. J. Vac. Sci. Technol., 2002. 20(6): p. 2881.CrossRefGoogle Scholar
  70. 70.
    Kumar, A. and G.M. Whitesides, Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol “ink” followed by chemical etching. Appl. Phys. Lett., 1993. 63(14): p. 2002.CrossRefGoogle Scholar
  71. 71.
    Zhao, X.M., Y.N. Xia, and G.M. Whitesides, Soft lithographic methods for nano-fabrication. J. Mater. Chem., 1997. 7(7): pp. 1069–1074.CrossRefGoogle Scholar
  72. 72.
    Xia, Y. and G.M. Whitesides, Soft lithography. Angew. Chem. Int. Ed., 1998. 37: pp. 550–575.CrossRefGoogle Scholar
  73. 73.
    Tormen, M., Microcontact printing techniques, in Alternative Lithography, C.M.S. Torres, Editor. 2003, Kluwer Academic.Google Scholar
  74. 74.
    Hui, C.Y., et al., Constraints on microcontact printing imposed by stamp deformation. Langmuir, 2002. 18: pp. 1394–1407.CrossRefGoogle Scholar
  75. 75.
    Delamarche, et al., Stability of molded polydimethylsiloxane microstructures. Adv. Mater., 1997. 9(9): pp. 741–746.CrossRefGoogle Scholar
  76. 76.
    Schmid, H. and B. Michel, Siloxane polymers for high-resolution, high-accuracy soft lithography. Macromolecules, 2000. 33: pp. 3042–3049.CrossRefGoogle Scholar
  77. 77.
    Tormen, M., et al., Sub-mm thick rubber-elastic stamp on rigid support for high reliability microcontact printing. Microelectron. Eng., 2002. 61–62: pp. 469–473.CrossRefGoogle Scholar
  78. 78.
    Yoo, P.J., et al., Unconventional patterning with a modulus-tunable mold: From imprinting to microcontact printing. Chem. Mater., 2004. 16: pp. 5000–5005.CrossRefGoogle Scholar
  79. 79.
    Odom, T.W., et al., Generation of 30–50 nm structures using easily fabricated composite PDMS masks. J. Am. Chem. Soc., 2002. 124: pp. 12112–12113.CrossRefGoogle Scholar
  80. 80.
    Libioulle, L., et al., Contact-inking stamps for microcontact printing of alkanethiols on gold. Langmuir, 1999. 15: pp. 300–304.CrossRefGoogle Scholar
  81. 81.
    Snyder, P.W., et al., Biocatalytic microcontact printing. J. Org. Chem., 2007. 72: pp. 7459–7461.CrossRefGoogle Scholar
  82. 82.
    Biebuyck, H.A., et al., Lithography beyond light: Microcontact printing with monolayer resists. IBM J Res. Dev., 1997. 41(1/2): p. 159.CrossRefGoogle Scholar
  83. 83.
    Chen, Y., et al., Microcontact printing and pattern transfer with a tri-layer processing. Microelectron. Eng., 2000. 53: pp. 253–256.CrossRefGoogle Scholar
  84. 84.
    Kim, E., Y. Xia, and G.M. Whitesides, Polymer microstructures formed by moulding in capillaries. Nature, 1995. 376: p. 581.CrossRefGoogle Scholar
  85. 85.
    Suh, K.Y. and H.H. Lee, Capillary force lithography: Large-area patterning, self-organisation and anisotropic dewetting. Adv. Funct. Mater., 2002. 12(6–7): p. 406.Google Scholar
  86. 86.
    Kim, Y.S., K.Y. Suh, and H.H. Lee, Fabrication of three-dimensional microstructures by soft molding. Appl. Phys. Lett., 2001. 79(14): p. 2285.CrossRefGoogle Scholar
  87. 87.
    Yoon, H., et al., Capillary force lithography with impermeable molds. Appl. Phys. Lett., 2006. 88: p. 254104CrossRefGoogle Scholar
  88. 88.
    Kim, E., et al., Solvent-assisted microcontact molding: A convenient method for fabricating three-dimensional structures on surfaces of polymers. Adv. Mater., 1997. 9: p. 651.CrossRefGoogle Scholar
  89. 89.
    Eddings, M.A. and B.K. Gale, A PDMS-based gas permeation pump for on-chip fluid handling in microfluidic devices. J. Micromech. Microeng., 2006. 16: pp. 2396–2402.CrossRefGoogle Scholar
  90. 90.
    Berre, M.L., et al., Micro-aspiration assisted lithography. Microelectron. Eng., 2007. 84: pp. 864–867.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Rutherford Appleton LaboratoryDidcotUK

Personalised recommendations