Nanofabrication by Scanning Probes

  • Zheng Cui


Both photons and charged beams are capable of delineating sub-100 nm patterns, as described in Chapters 2 and 3. However, one question has been missing: that is, at what cost? To break into sub-100 nm scale, many “tricks”, apart from short wavelength and high numerical aperture (NA), have to be used in photon-based lithography, and very sophisticated charged optical system is required in charged particle-based lithography. For low-cost nanoscale patterning technologies, scanning probe lithography (SPL) is definitely an alternative to expensive photon or charged beam techniques.

Scanning probe lithography appeared shortly after the advent of scanning tunneling microscope (STM). Researchers actually stumbled onto it when they observed that some lines were left on the sample surface after an extended period of scanning of STM probe [1]. It is now known as local oxidation process initiated by a probe. At the time when the lines were observed, the mechanism was unclear. It was...


Atomic Force Microscope Bias Voltage Scanning Tunneling Microscope Tunneling Current Highly Orient Pyrolytic Graphite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ringger, M., et al., Nanometer lithography with the scanning tunnelling microscope. Appl. Phys. Lett., 1985. 46(9): p. 832.CrossRefGoogle Scholar
  2. 2.
    Binnig, G. and H. Rohrer, Scanning tunnelling microscopy. Helv. Phys. Acta, 1982. 55(6): pp. 26–735Google Scholar
  3. 3.
    Binnig, G., C.F. Quate, and C. Gerber, Atomic force microscope. Phys. Rev. Lett., 1986. 56(9): p. 930.CrossRefGoogle Scholar
  4. 4.
    West, P. and A. Ross, An Introduction to Atomic Force Microscopy Modes. 2006, Pacific Nanotechnology, Inc.Google Scholar
  5. 5.
    Pohl, D.W., W. Denk, and M. Lanz, Optical stethoscopy: Image recording with resolution λ/20. Appl. Phys. Lett., 1984. 44(7): pp. 651–653CrossRefGoogle Scholar
  6. 6.
    Folwer, R.H. and L.W. Nordheim, Proc. R. Soc. London, 1928. A119: p. 173.Google Scholar
  7. 7.
    Cui, Z. and L. Tong, Optimum geometry and space-charge effects in vacuum microelectronic devices. IEEE Trans. Electron Devices, 1993. 40(2): p. 448.CrossRefGoogle Scholar
  8. 8.
    Soh, H.T., K.W. Guarini, and C.F. Quate, Resist exposure using field-emitted electrons, in Scanning Probe Lithography. 2001, Kluwer AcademicGoogle Scholar
  9. 9.
    McCord, M.A. and R.F.W. Pease, Lift-off metallization using poly(methyl methacrylate) exposed with a scanning tunnelling microscope. J. Vac. Sci. Technol., 1988. B6(1): p. 293.Google Scholar
  10. 10.
    Wilder, K., et al., Electron beam and scanning probe lithography: A comparison. J. Vac. Sci. Technol., 1998. B16(5): p. 3864.Google Scholar
  11. 11.
    Mayer, T.M., D.P. Adams, and B.M. Marder, Field emission characteristics of the scanning tunnelling microscope for nanolithography. J. Vac. Sci. Technol., 1996. B14(4): p. 2438.Google Scholar
  12. 12.
    Betzig, E., et al., Near-field scanning optical microscopy (NSOM) – development and biophysical applications. Biophys. J. 1996. 49(1): pp. 269–279.CrossRefGoogle Scholar
  13. 13.
    Froehlich, F.F., T.D. Milster, and R. Uber, High-resolution optical lithography with a near-field scanning subwavelength aperture. Proc. SPIE, 1993. 1751: pp. 312–320.CrossRefGoogle Scholar
  14. 14.
    Leggett, G.J., Scanning near-field photolithography – surface photochemistry with nanoscale spatial resolution. Chem. Soc. Rev., 2006. 35: pp. 1150–1161.CrossRefGoogle Scholar
  15. 15.
    Smolyaninov, I., D.L. Mazzoni, and C.C. Davis, Near-field direct-write ultraviolet lithography and shear force microscopic studies of the lithographic process. Appl. Phys. Lett., 1995. 67(26): p. 3859.CrossRefGoogle Scholar
  16. 16.
    Riehn, R., et al., Near-field optical lithography of a conjugated polymer. Appl. Phys. Lett., 2003. 82: p. 526.CrossRefGoogle Scholar
  17. 17.
    Novotny, L., R.X. Bian, and X.S. Xie, Theory of nanometric optical tweezers. Phys. Rev. Lett., 1997. 79: pp. 645–648.CrossRefGoogle Scholar
  18. 18.
    Royer, P., et al., Near-field optical patterning and structuring based on local-field enhancement at the extremity of a metal tip. Phil. Trans. R. Soc. Lond., 2004. A362: pp. 821–842.Google Scholar
  19. 19.
    Sun, S. and G.J. Leggett, Matching the resolution of electron beam lithography by scanning near-field photolithography. Nano Lett., 2004. 4(8): pp. 1381–1384.CrossRefGoogle Scholar
  20. 20.
    Kramer, S., R.R. Fuierer, and C.B. Gorman, Scanning probe lithography using self-assembled monolayers. Chem. Rev., 2003. 103(11): pp. 4367–4418.CrossRefGoogle Scholar
  21. 21.
    Day, H.C. and D.R. Allee, Selective area oxidation of silicon with a scanning force microscope. Appl. Phys. Lett., 1993. 62(21): p. 2691.CrossRefGoogle Scholar
  22. 22.
    Garcia, R., R.V. Martinez, and J. Martinez, Nano-chemistry and scanning probe nanolithographies. Chem. Soc. Rev., 2006. 35: pp. 29–38.CrossRefGoogle Scholar
  23. 23.
    Avouris, P., T. Hertel, and R. Martel, Atomic force microscope tip-induced local oxidation of silicon: Kinetics, mechanism, and nanofabrication. Appl. Phys. Lett., 1997. 71(2): p. 285.CrossRefGoogle Scholar
  24. 24.
    Stievenard, D., P.A. Fontaine, and E. Dubois, Nanooxidation using a scanning probe microscope: An analytical model based on field induced oxidation. Appl. Phys. Lett., 1997. 70(24): p. 3272.CrossRefGoogle Scholar
  25. 25.
    Dagata, J.A., et al., Modification of hydrogen-passivated silicon by a scanning tunneling microscope operating in air. Appl. Phys. Lett., 1990. 56: p. 2001.CrossRefGoogle Scholar
  26. 26.
    Fontaine, P.A., E. Dubois, and D. Stievenard Characterization of scanning tunneling microscopy and atomic force microscopy-based techniques for nanolithography on hydrogen-passivated silicon. J. Appl. Phys., 1998. 84(4): p. 1776.CrossRefGoogle Scholar
  27. 27.
    Snow, E.S., et al., A metal/oxide tunneling transistor. Appl. Phys. Lett., 1998. 72: p. 3071.CrossRefGoogle Scholar
  28. 28.
    Muller, E.W. and T.T. Tsong, Field Ion Microscopy. Principle and Applications. 1969, Elsevier.Google Scholar
  29. 29.
    Mamin, H.J., et al., Gold deposition from a scanning tunneling microscope tip. J. Vac. Sci. Technol., 1991. B9(2): p. 1398.Google Scholar
  30. 30.
    T.T. Tsong, Field ion image formation. Surf. Sci., 1978. 70: pp. 211–233.CrossRefGoogle Scholar
  31. 31.
    Chang, C.S., W.B. Su, and T.T. Tsong, Field evaporation between a gold tip and a gold surface in the scanning tunneling microscope configuration. Phys. Rev. Lett., 1994. 72(4): p. 574.CrossRefGoogle Scholar
  32. 32.
    Houel, A., et al., Direct patterning of nanostructures by field-induced deposition from a scanning tunneling microscope tip. J. Vac. Sci. Technol., 2002. B20(6): p. 2337.Google Scholar
  33. 33.
    Cui, Z. and L. Tong, A new approach to simulating liquid metal ion sources. J. Vac. Sci. Technol., 1988. B6(6): p. 2104.Google Scholar
  34. 34.
    McCord, M.A. and D.D. Awschalom, Direct deposition of magnetic dots using a scanning tunneling microscope. Appl. Phys. Lett., 1990. 57(20): p. 2153.CrossRefGoogle Scholar
  35. 35.
    Koinuma, M. and K. Uosaki, AFM tip induced selective electrochemical etching and metal deposition on p-GaAs(100) surface. Surf. Sci., 1996. 357–358: pp. 565–570.CrossRefGoogle Scholar
  36. 36.
    Piner, R.D., et al., Dip-pen nanolithography. Science, 1999. 283: pp. 661–663.CrossRefGoogle Scholar
  37. 37.
    Xia, Y. and G.M. Whitesides, Soft lithography. Angew. Chem. Int. Ed., 1998. 37: p. 550.CrossRefGoogle Scholar
  38. 38.
    Mirkin's group. [cited; Available from:].
  39. 39.
    Ginger, D.S., H. Zhang, and C.A. Mirkin, The evolution of Dip-pen nanolithography. Angew. Chem. Int. Ed., 2004. 43: pp. 30–45.CrossRefGoogle Scholar
  40. 40.
    Nano Ink Corp. [cited; Available from:].
  41. 41.
    Nagahara, L.A., T. Thundat, and S.M. Lindsay, Nanolithography on semiconductor surfaces under an etching solution. Appl. Phys. Lett., 1990. 57(3): p. 270.CrossRefGoogle Scholar
  42. 42.
    Ye, J.H., et al., Local modification of n-Si(100) surface in aqueous solutions under anodic and cathodic potential polarization with an in situ scanning tunneling microscope. J. Vac. Sci. Technol., 1995. B13: p. 1423.Google Scholar
  43. 43.
    Thomson, R.E., J. Moreland, and A. Roshko, Surface modification of YBa2Cu3O7-delta thin films using the scanning tunneling microscope: Five methods. Nanotechnology, 1994. 5: p. 57.CrossRefGoogle Scholar
  44. 44.
    Kaneshiro, C. and T. Okumura, Nanoscale etching of GaAs surfaces in electrolytic solutions by hole injection from a scanning tunneling microscope tip. J. Vac. Sci. Technol., 1997. B15: p. 1595.Google Scholar
  45. 45.
    Shedd, G.M. and P.E. Russell, The scanning tunneling microscope as a tool for nanofabrication. Nanotechnology, 1990. 1: pp. 67–80.CrossRefGoogle Scholar
  46. 46.
    Li, Y.Z., et al., Writing nanometer-scale symbols in gold using the scanning tunneling microscope. Appl. Phys. Lett., 1989. 54: p. 1424.CrossRefGoogle Scholar
  47. 47.
    Schneir J, et al., Creating and observing surface features with a scanning tunneling microscope. Proc. SPIE, 1987. 897: p. 16.Google Scholar
  48. 48.
    Kondo, S., et al., Surface modification mechanism of materials with scanning tunneling microscope. J. Appl. Phys., 1995. 78: p. 155.CrossRefGoogle Scholar
  49. 49.
    Mamin, H.J. and D. Rugar, Thermomechanical writing with an atomic force microscope tip. Appl. Phys. Lett., 1992. 61: p. 1003.CrossRefGoogle Scholar
  50. 50.
    Basu, A.S., S. McNamara, and Y.B. Gianchandani, Scanning thermal lithography maskless, submicron thermochemical patterning of photoresist by ultracompliant probes. J. Vac. Sci. Technol., 2004. B22(6): p. 3217.Google Scholar
  51. 51.
    Vettiger, P., et al., The millipede – more than one thousand tips for future AFM data storage. IBM J. Res. Dev., 2000. 44(323).Google Scholar
  52. 52.
    Magno, R. and B.R. Bennett, Nanostructure patterns written in III–V semiconductors by an atomic force microscope. Appl. Phys. Lett., 1997. 70: p. 1855.CrossRefGoogle Scholar
  53. 53.
    Filho, H.D.F., et al., Metal layer mask patterning by force microscopy lithography. Mater. Sci. Eng., 2004. B112: p. 194.CrossRefGoogle Scholar
  54. 54.
    Muller, M., et al., Controlled structuring of mica surfaces with the tip of an atomic force microscope by mechanically induced local etching. Surf. Interface Anal., 2004. 36: p. 189.CrossRefGoogle Scholar
  55. 55.
    Hu, S., et al., Fabrication of silicon and metal nanowires and dots using mechanical atomic force lithography. J. Vac. Sci. Technol., 1998. B16: p. 2822.Google Scholar
  56. 56.
    Chen, Y., J. Hsu, and H. Lin, Fabrication of metal nanowires by atomic force microscopy nanoscratching and lift-off process. Nanotechnology, 2005. 16: pp. 1112–1115.CrossRefGoogle Scholar
  57. 57.
    Jones, A.G., et al., Highly tunable, high-throughput nanolithography based on strained regioregular conducting polymer films. Appl. Phys. Lett., 2006. 89: p. 013119.CrossRefGoogle Scholar
  58. 58.
    Zhou, D., et al., Use of atomic force microscopy for making addresses in DNA coatings. Langmuir, 2002. 18: p. 8278.CrossRefGoogle Scholar
  59. 59.
    Xu, S. and G. Liu, Nanometer-scale fabrication by simultaneous nanoshaving and molecular self-assembly. Langmuir, 1997. 13: pp. 127–129.CrossRefGoogle Scholar
  60. 60.
    Quate, C.F., Scanning probes as a lithography tool for nanostructures. Surf. Sci. 1997. 386: pp. 259–264.CrossRefGoogle Scholar
  61. 61.
    Barrett, R.C. and C.F. Quate, High speed, large-scale imaging with the atomic force microscope. J. Vac. Sci. Technol., 1991. B9: p. 302.Google Scholar
  62. 62.
    Manalis, S.R., S.C. Minne, and C.F. Quate, Atomic force microscopy for high speed imaging using cantilevers with an integrated actuator and sensor. Appl. Phys. Lett., 1996. 68(6): p. 871.CrossRefGoogle Scholar
  63. 63.
    Marrian, C.R.K., E.A. Dobisz, and J.A. Dagata, Electron-beam lithography with the scanning tunnelling microscope. J. Vac. Sci. Technol., 1992. B10(6): p. 2877.Google Scholar
  64. 64.
    Park, S.W., et al., Nanometer scale lithography at high scanning speeds with the atomic force microscope using spin on glass. Appl. Phys. Lett., 1995. 67(16): p. 2415.CrossRefGoogle Scholar
  65. 65.
    Wilder, K., et al., Nanometer-scale patterning and individual current-controlled lithography using multiple scanning probes. Rev. Sci. Instrum., 1999. 70(6): p. 2822.CrossRefGoogle Scholar
  66. 66.
    Despont, M., et al., VLSI-NEMS chip for parallel AFM data storage. Sens. Actuators, 2000. 80: pp. 100–107.CrossRefGoogle Scholar
  67. 67.
    Salaita, K., et al., Massively parallel Dip–pen nanolithography with 55000-pen two-dimensional arrays. Angew. Chem. Int. Ed., 2006. 45: pp. 7220–7223.CrossRefGoogle Scholar
  68. 68.
    Tseng, A.A., A. Notargiacomo, and T.P. Chen, Nanofabrication by scanning probe microscope lithography: A review. J. Vac. Sci. Technol., 2005. B23(3): p. 877.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Rutherford Appleton LaboratoryDidcotUK

Personalised recommendations