Nanofabrication by Charged Beams

  • Zheng Cui


Point Spread Function Exposure Dose Proximity Effect Chromatic Aberration High Beam Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Haller, I., M. Hazakis, and R. Srinivasan, High resolution positive resists for electron beam exposure. IBM J. Res. Develop., 1968. 12(251).Google Scholar
  2. 2.
    Mayadas, A.F. and R.B. Laibowitz, One-dimensional superconductors. Phys. Rev. Lett., 1972. 28: p. 156.CrossRefGoogle Scholar
  3. 3.
    Yamazaki, K. and H. Namatsu, 5-nm-order electron-beam lithography for nanodevice fabrication. Jpn. J. Appl. Phys., 2004. 43(6B): p. 3767.CrossRefGoogle Scholar
  4. 4.
    Swanson, L.W., Liquid metal ion sources – mechanism and application. Nucl. Instrum. Methods Phy. Res., 1983. 218(1–3): p. 347.CrossRefGoogle Scholar
  5. 5.
    Cui, Z., Electron beam lithography (Chapter 3), in Micro-Nanofabrication Technologies and Applications. 2006, Springer.Google Scholar
  6. 6.
    Harris, L.A., Introduction to Electron Beam Technology, R. Bakish, Editor. 1962, John Wiley & Sons.Google Scholar
  7. 7.
    Cui, Z. and L. Tong, Optimum geometry and space charge effect in vacuum microelectronic devices. IEEE Electron Dev., 1993. ED-40(2): p. 448.CrossRefGoogle Scholar
  8. 8.
    GEMINI field emission electron optics: Core technology for the LEO SUPRA range. [cited; Available from:].
  9. 9.
    Cui, Z. and L. Tong, A new approach to simulating liquid metal ion sources. J. Vac. Sci. Technol., 1988. B6(6): p. 2104.Google Scholar
  10. 10.
    Prewett, P.D. and D.K. Jefferies, Characteristics of a gallium liquid metal field emission ion source. J. Phys. D: Appl. Phys., 1980. 13: p. 1747.CrossRefGoogle Scholar
  11. 11.
    Hawkes, P.W. and E. Kasper, Principles of Electron Optics. 1989, Academic Press.Google Scholar
  12. 12.
    Rouse, J., X. Zhu, and E. Munro, Solution of electron optics problems with space charge in 2D and 3D. Proc. SPIE, 1995. 2522: pp. 375–386.CrossRefGoogle Scholar
  13. 13.
    Broers, A.N., High-resolution thermionic cathode scanning transmission electron microscope. Appl. Phys. Lett., 1973. 22: pp. 610–612.CrossRefGoogle Scholar
  14. 14.
    Bracher, B.H. and P.D. Prewett, Electron beam spot size calculation and software, in Rutherford Appleton Laboratory Internal Report 1997.Google Scholar
  15. 15.
    Munro, E., Electron and ion optical design software for integrated circuit manufacturing equipment. J. Vac. Sci. Technol., 1997. B15(6): p. 2692.Google Scholar
  16. 16.
    Murata, K., T. Matsukaw, and R. Shimizu, Monte Carlo calculations on electron scattering in a solid target. Jpn. J. Appl. Phys., 1971. 10(6): p. 678.CrossRefGoogle Scholar
  17. 17.
    Parikh, M. and D.F. Kyser, Energy deposition function in electron resist films on substrates. J. Appl. Phys., 1979. 50(2): p. 1104.CrossRefGoogle Scholar
  18. 18.
    Cui, Z., MOCASEL: A total solution to electron beam lithography simulation. Proc. SPIE, 1999. 3676: p. 494.CrossRefGoogle Scholar
  19. 19.
    Parikh, M., Self-consistent proximity effect correction technique for resist exposure (SPECTRE). J. Vac. Sci. Technol., 1978. 15(3): p. 931.CrossRefGoogle Scholar
  20. 20.
    Parikh, M., Correction to proximity effects in electron beam lithography. II. Implementation. J. Appl. Phys., 1979. 50(6): p. 4378.CrossRefGoogle Scholar
  21. 21.
    Hintermaier, M., et al., Proximity correction using computer aided proximity correction (CAPROX) evaluation and application. J. Vac. Sci. Technol., 1991. B9(6): p. 3043.Google Scholar
  22. 22.
    Owen, G. and P. Rissman, Proximity effect correction for electron beam lithography by equalization of background dose. J. Appl. Phys., 1983. 54(6): p. 3573.CrossRefGoogle Scholar
  23. 23.
    Jackel, L.D., et al., Beam energy effects in electron beam lithography: The range and intensity of backscattered exposure. Appl. Phys. Lett., 1984. 45: p. 698.CrossRefGoogle Scholar
  24. 24.
    Wu, B. and A.R. Neureuther, Energy deposition and transfer in electron beam lithography. J. Vac. Sci. Technol., 2001. B19(6): p. 2508.Google Scholar
  25. 25.
    Kyser, D.F., Spatial resolution limits in electron beam lithography. J. Vac. Sci. Technol., 1983. B1(4): p. 1391.Google Scholar
  26. 26.
    Xia, X., et al., Fabrication of near-infrared and optical meta-materials on insulating substrates by lift-off using PMMA/Al stack. Microelectron. Eng., 2007. 84(5–8): pp. 1144–1147.CrossRefGoogle Scholar
  27. 27.
    Cui, Z., TEMP: A software package for simulating resist heating in e-beam lithography. Proc. SPIE, 1998. 3331: pp. 420–430.CrossRefGoogle Scholar
  28. 28.
    Babin, S., P. Hudek, and I. Kosic, Quantitative measurement of the resist heating in a variable shaped electron lithography. J. Vac. Sci. Technol., 1997. B15(2): p. 311.Google Scholar
  29. 29.
    Yang, H., et al., Low-energy electron-beam lithography of ZEP-520 positive resist, Proceedings of the 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems. 2006. p. 391.Google Scholar
  30. 30.
    Lee, Y.H., et al., Low voltage alternative for electron beam lithography. J. Vac. Sci. Technol., 1992. B10(6): p. 3094.Google Scholar
  31. 31.
    Yoshizawa, M., et al., Challenges to ultra-thin resist process for LEEPL. J. Photopolym. Sci. Technol. 2004. 17(4): pp. 581–586.CrossRefGoogle Scholar
  32. 32.
    McCaord, M.A. and T.H. Newman, Low voltage, high resolution studies of electron beam resist exposure and proximity effect. J. Vac. Sci. Technol., 1992. B10(6): p. 3083.Google Scholar
  33. 33.
    T.P.H. Chang, D.P. Kern, and L.P. Murray, Arrayed miniature electron beam columns for high throughput sub-100 nm lithography. J. Vac. Sci. Technol., 1992. B10: p. 2743.Google Scholar
  34. 34.
    Spallas, J.P., et al., A manufacturable miniature electron beam column. Microelectron. Eng., 2006. 83: p. 984.CrossRefGoogle Scholar
  35. 35.
    Utsumi, T., Low-energy e-beam proximity lithography (LEEPL): Is the simplest the best? Jpn. J. Appl. Phys., 1999. 38(12B): p. 7046.CrossRefGoogle Scholar
  36. 36.
    Utsumi, T., Present status and future prospects of LEEPL. Microelectron. Eng., 2006. 83: pp. 738–748.CrossRefGoogle Scholar
  37. 37.
    Lindhardt, J. and M. Scharff, Energy dissipation by ions in the keV region. Phys. Rev., 1961. 124: p. 128.CrossRefGoogle Scholar
  38. 38.
    Cui, Z., A Monte Carlo programme for simulating ion penetration in amorphous solid targets, in Rutherford Appleton Laboratory Internal Report 1993.Google Scholar
  39. 39.
    Matsui, S., et al., Lithography approach for 100 nm fabrication by focused ion beam. J. Vac. Sci. Technol., 1986. B4: p. 845.Google Scholar
  40. 40.
    Randall, J.N., et al., Masked ion beam resist exposure using grid support stencil masks. J. Vac. Sci. Technol., 1985. B3(1): p. 58.Google Scholar
  41. 41.
    Yang, H., et al., Low-energy electron-beam lithography of hydrogen silsesquioxane. Microelectron. Eng., 2006. 83: pp. 788–791.CrossRefGoogle Scholar
  42. 42.
    Yasin, S., D.G. Hasko, and H. Ahmed, Fabrication of <5 nm width lines in poly(methylmethacrylate) resist using a water:Isopropyl alcohol developer and ultrasonically-assisted development. Appl. Phys. Lett., 2001. 78(18): pp. 2760–2762.CrossRefGoogle Scholar
  43. 43.
    Hu, W., et al., Sub-10 nm electron beam lithography using cold development of poly(methylmethacrylate). J. Vac. Sci. Technol., 2004. B22(4): p. 1711.Google Scholar
  44. 44.
    Product data sheets. [cited; Available from:].
  45. 45.
    Broers, A.N., et al., Electron-beam fabrication of 8 nm metal structures. Appl. Phys. Lett., 1976. 29(9): pp. 596–598.CrossRefGoogle Scholar
  46. 46.
    Broers, A.N., Resolution limits for electron-beam lithography. IBM J. Res. Develop., 1988. 32(4): p. 502.CrossRefGoogle Scholar
  47. 47.
    Ishii, T., H. Nozawa, and T. Tamamura, Nanocomposite resist system. Appl. Phys. Lett., 1997. 70(9): p. 1110.CrossRefGoogle Scholar
  48. 48.
    Dentinger, P.M. and J.W. Taylor, Increasing plasma etch resistance of resists using fullerene additives. J. Vac. Sci. Technol., 1997. B15(6): p. 2575.Google Scholar
  49. 49.
    You, H.-C., F.-H. Ko, and T.-F. Lei, Resist nano-modification technology for enhancing the lithography and etching performance. Microelectron. Eng. 2005. 78–79: pp. 521–527.CrossRefGoogle Scholar
  50. 50.
    Merhari, L., et al., Nanocomposite resist systems for next generation lithography. Microelectron. Eng., 2002. 63(4): pp. 391–403.CrossRefGoogle Scholar
  51. 51.
    Namatsu, H., et al., Nano-patterning of a hydrogen silsesquioxane resist with reduced linewidth fluctuation. Microelectron. Eng., 1998. 41–42: pp. 331–334.CrossRefGoogle Scholar
  52. 52.
    Results are from NanoBeam Ltd. ( 2008.
  53. 53.
    Grigorescu, A.E., et al., 10 nm lines and spaces written in HSQ, using electron beam lithography. Microelectron. Eng., 2007. 84(5–8): pp. 822–824.CrossRefGoogle Scholar
  54. 54.
    Grigorescu, A.E., et al., Influence of the development process on ultimate resolution electron beam lithography, using ultrathin hydrogen silsesquioxane resist layers. J. Vacuum Sci. Technol. B, 2007. 25(6): pp. 1998–2003.CrossRefGoogle Scholar
  55. 55.
    Cui, Z., et al., Profile control of Su-8 photoresist using different radiation sources. Proc. SPIE, 2001. 4407: p. 119.CrossRefGoogle Scholar
  56. 56.
    Schneider, A., et al., SU-8 resist and X-ray LIGA technique to produce 1 mm high Ni gear wheel, in Proc. 2nd International Workshop on Microfactories. 2000.Google Scholar
  57. 57.
    Cui, Z., et al., Comparative study of AZPN114 and SAL601 chemically amplified resists for e-beam nanolithography. J. Vac. Sci. Technol., 1998. B16(6): p. 3284.Google Scholar
  58. 58.
    Cui, Z. and P.D. Prewett, Comparative study of AZPF514 and UVIII chemically amplified resists for e-beam nanolithography. Microelectron. Eng., 1999. 46(1–4): p. 255.CrossRefGoogle Scholar
  59. 59.
    Nordquist, K.J., D.J. Resnick, and E.S. Ainley, Comparison of negative resists for 100 nm electron-beam direct write and mask making applications. J. Vac. Sci. Technol., 1998. B16(6): p. 3289.Google Scholar
  60. 60.
    Chen, W. and H. Ahmed, Fabrication of 5–7 nm wide etched lines in silicon using 100 keV electron-beam lithography and polymethylmethacrylate resist. Appl, Phys. Lett., 1993. 62(13): p. 1499.CrossRefGoogle Scholar
  61. 61.
    Hasko, D.G., S. Yasin, and A. Mumtaz, Influence of developer and development conditions on the behavior of high molecular weight electron beam resists. J. Vac. Sci. Technol., 2000. B18(6): p. 3441.Google Scholar
  62. 62.
    Ocola, L.E. and A. Stein, Effect of cold development on improvement in electron-beam nanopatterning resolution and line roughness. J. Vac. Sci. Technol., 2006. B24(6): p. 3061.Google Scholar
  63. 63.
    Ocola, L.E., et al., Lithography for sub-60 nm resist nanostructures. J. Vac. Sci. Technol., 1999. B17(6): p. 3164.Google Scholar
  64. 64.
    Yang, H., et al., Comparative study of e-beam resist processes at different development temperature. Microelectron. Eng., 2007. 84(1109–1112).CrossRefGoogle Scholar
  65. 65.
    Chen, Y., H. Yang, and Z. Cui, Effects of developing conditions on the contrast and sensitivity of hydrogen silsesquioxane. Microelectron. Eng., 2006. 83(1119–1123).CrossRefGoogle Scholar
  66. 66.
    Sigmund, P., Theory of sputtering I: Sputtering yield of amorphous and polycrystalline targets. Phys. Rev., 1969. 184: p. 383.CrossRefGoogle Scholar
  67. 67.
    Fu, X., et al., Gas assisted etching of niobium with focused ion beam. Microelectron. Eng., 2005. 78–79(29–33).Google Scholar
  68. 68.
    Santschi, C., et al., Interdigitated 50 nm Ti electrode arrays fabricated using XeF2 enhanced focused ion beam etching. Nanotechnology, 2006. 17: pp. 2722–2729.CrossRefGoogle Scholar
  69. 69.
    Abramo, M., L. Hahn, and L. Moskowicz, Gas assisted etching: An advanced technique for focused ion beam device modification. Proc. ISTFA, 1994. 439.Google Scholar
  70. 70.
    Pease, R.F., et al., Prospects for charged particle lithography as a manufacturing technology. Microelectron. Eng., 2000. 53: pp. 55–60.CrossRefGoogle Scholar
  71. 71.
    Pfeiffer, H.C., Recent advances in electron beam lithography for high-volume production of VLSI devices. IEEE Trans. Electron Dev., 1979. ED-26(4): p. 663.CrossRefGoogle Scholar
  72. 72.
    Pfeiffer, H.C., The history and potential of maskless e-beam lithography. Microlithography World, 2005. February.Google Scholar
  73. 73.
    Pain, L., et al., Transitioning of direct e-beam write technology from research and development into production flow. Microelectron. Eng., 2006. 83: pp. 749–753.CrossRefGoogle Scholar
  74. 74.
    Nakayama, Y., et al., Electron-beam cell projection lithography: A new high-throughput electron-beam direct-writing technology using a specially tailored Si aperture. J. Vac. Sci. Technol., 1990. B8(6): p. 1836.Google Scholar
  75. 75.
    Pfeiffer, H.C. and W. Stickel, PREVAIL- an e-beam stepper with variable axis immersion lenses. Microelectron. Eng., 1995. 27: p. 143.CrossRefGoogle Scholar
  76. 76.
    Berger, S.D. and J.M. Gibson, New approach to projection-electron lithography with demonstrated 0.1 µm linewidth. Appl. Phys. Lett., 57(2): p. 153.Google Scholar
  77. 77.
    Okamoto, K., et al., High-throughput e-beam stepper lithography. Solid State Technology, 2000. May.Google Scholar
  78. 78.
    Yanabe, M., Status and issues of electron projection lithography. J. Microlith. Microfab. Microsyst., 2005. 4(1): p. 011005.CrossRefGoogle Scholar
  79. 79.
    Mkrtchyan, M., et al., Space charge effects in e-beam projection lithography. Solid State Technology, 2000. July.Google Scholar
  80. 80.
    Eder-Kapl, S. et al., Projection mask-less lithography (PML2): First results from the multi beam blanking demonstrator. Microelectron. Eng., 2006. 83: pp. 968–971.CrossRefGoogle Scholar
  81. 81.
    Kampherbeek, B.J., et al., An experimental setup to test the MAPPER electron lithography concept. Microelectron. Eng., 2000. 53: pp. 279–282.CrossRefGoogle Scholar
  82. 82.
    Coyle, S.T., et al., Prototype raster multibeam lithography tool. J. Vac. Sci. Technol., 2002. B20(6): p. 2657.Google Scholar
  83. 83.
    News article: Mapper demos massively parallel e-beam lithography. Semicondutor International, 2007. September.Google Scholar
  84. 84.
    Gross, G., Ion projection lithography: Next generation technology? J. Vac. Sci. Technol., 1997. B15(6): p. 2136.Google Scholar
  85. 85.
    Hirschera, S. et al., Ion projection lithography below 70 nm: Tool performance and resist process. Microelectron. Eng., 2002. 61–62: pp. 301–307.CrossRefGoogle Scholar
  86. 86.
    Platzgummer, E., H. Löschner, and G. Gross, Projection maskless patterning (PMLP) for the fabrication of leading-edge complex masks and nano-imprint templates. Proc. SPIE, 2007. 6730: p. 108.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Zheng Cui
    • 1
  1. 1.Rutherford Appleton LaboratoryDIDCOTUK

Personalised recommendations