Nanofabrication by Photons

  • Zheng Cui


Since the planar processing for integrated circuits (ICs) manufacturing started nearly half century ago, optical lithography, often called photolithography, has become the convenient choice for making planar microstructures. In optical lithography, a mask or photomask, also called reticle, is imaged onto a flat substrate surface coated with a thin layer of polymer material called photoresist. The photon energy is focused onto the photoresist, causing polymer chain scission or cross-linking. The mask pattern is then delineated into the photoresist after development.

There is a whole spectrum of photons, as shown in Fig. 2.1, which can be explored for lithographic patterning. In the early days when the features size of ICs were a few micrometers, optical lithography was done with visible light and was no different from copying photos in a photography workshop. As the circuit feature dimension shrank, illuminating light with shorter wavelength was employed. This was the time...


Surface Plasmon Polariton Spatial Light Modulator Mask Pattern Optical Lithography Mask Feature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Lin, B., The ending of optical lithography and the prospects of its successors. Microelectronic Engineering, 2006. 83: pp. 604–613.CrossRefGoogle Scholar
  2. 2.
    Attwood, D., Soft X-Rays and Extreme Ultraviolet Radiation: Principles and Applications. 2000, Cambridge University Press.Google Scholar
  3. 3.
    Cui, Z., Micro-Nanofabrication Technologies and Applications. 2006, Springer.Google Scholar
  4. 4.
    Wong, A.K., Optical Imaging in Projection Microlithography. 2005, SPIE Press.Google Scholar
  5. 5.
    Cui, Z., Computer simulation of optical lithography in VLSI fabrication, in Symposium of Chinese Young Scholars on Optical Application Technologies. 1994.Google Scholar
  6. 6.
    Burnett, J.H., Z.H. Levine, and E.L. Shirley, Intrinsic birefringence in calcium fluoride and barium fluoride. Phys. Rev. B, 2001. 64: p. 241102.CrossRefGoogle Scholar
  7. 7.
    Hatzakis, M., B.J. Canavello, and I.M. Shaw, Single-step optical lift-off process. IBM J. Res. Develop., 1980. 24(4): pp. 452–460.CrossRefGoogle Scholar
  8. 8.
    Bakshi, V., (Editor), EUV Sources for Lithography. 2006, SPIE Press.Google Scholar
  9. 9.
    Banine, V. and R. Moors, Plasma sources for EUV lithography exposure tools. J. Phys. D: Appl. Phys., 2004. 37: p. 3207.CrossRefGoogle Scholar
  10. 10.
    Gargini, P., et al., International EUV Initiative (IEUVI) overview: challenges and collaborative efforts. Future Fab Intl., 2006. 21.Google Scholar
  11. 11.
    Jonkers, J., High power extreme ultra-violet (EUV) light sources for future lithography. Plasma Sources Sci. Technol., 2006. 15: pp. S8–S16.CrossRefGoogle Scholar
  12. 12.
    Tomofuji, T., et al., Mo/Si multilayer (ML) mirror deposited with ion beam sputtering using Kr gas, in 3rd international EUVL symposium. 2004.Google Scholar
  13. 13.
    Stivers, A., et al., EUV mask defects strategy, in EUV mask development seminar. 2002.Google Scholar
  14. 14.
    Naulleau, P., et al., Lithographic characterization of the printability of programmed extreme ultraviolet substrate defects. J. Vac. Sci. Technol., 2003. B21(4): p. 1286.Google Scholar
  15. 15.
    Liang, T., et al., Demonstration of damage-free mask repair using electron beam-induced processes. Proc. SPIE, 2004. 5446: pp. 291–300.CrossRefGoogle Scholar
  16. 16.
    Hand, A., EUVL Results Show Promise, But Still Many Challenges. Semiconductor International, 2007 (September).Google Scholar
  17. 17.
    Gwyn, C.W. and P.J. Silverman, EUV lithography: transition from research to commercialization. Proc. SPIE, 2003. 5130: pp. 990–1004.CrossRefGoogle Scholar
  18. 18.
    Silverman, P.J., Extreme ultraviolet lithography: overview and development status. J. Microlith. Microfab. Microsyst., 2005. 4(1): p. 011006.CrossRefGoogle Scholar
  19. 19.
    Smith, H.I. and F. Cerrina, X-ray lithography for ULSI manufacturing. Microlithography World, 1997. 6(1): p. 10.Google Scholar
  20. 20.
    Wind, S., et al., Lithography and fabrication processes for sub-100 nm scale complementary metal-oxide semiconductor. J. Vac. Sci. Technol., 1995. B13(6): p. 2688.Google Scholar
  21. 21.
    Krasnoperva, A.A., et al., Imaging capability of proximity X-ray lithography at 70 nm ground rule. Proc. SPIE, 1999. 3676: p. 24.CrossRefGoogle Scholar
  22. 22.
    K. Early, M.L. Schattenberg, and H.I. Smith, Absence of resolution degradation in x-ray lithography. Microelectronic Engineering, 1990. 11: pp. 317–321.CrossRefGoogle Scholar
  23. 23.
    Vladimirsky, Y., et al., Demagnification in proximity X-ray lithography and extensibility to 25 nm by optimizing Fresnel diffraction. J. Phys. D: Appl. Phys., 1999. 32: p. L114.CrossRefGoogle Scholar
  24. 24.
    Ayon, A.A., R.L. Bayt, and K.S. Breuer, Deep reactive ion etching: a promising technology for micro- and nanosatellites. Smart Mater. Struct., 2001. 10: pp. 1135–1144.CrossRefGoogle Scholar
  25. 25.
    Lin, B.J., The k3 coefficient in nonparaxial lambda/NA scaling equations for resolution, depth of focus, and immersion lithography J. Microlitho, Microfab. Microsyst., 2002. 1: p. 7.Google Scholar
  26. 26.
    Fay, B., Advanced optical lithography development, from UV to EUV. Microelectronic Engineering, 2002. 61–62: pp. 11–24.CrossRefGoogle Scholar
  27. 27.
    Technology backgrounder: Immersion Lithography published by IC Knowledge. LLC 2003.Google Scholar
  28. 28.
    Smith, B.W. and J. Cashmore, Challenges in high NA, polarization, and photoresists. Proc. SPIE, 2002. 4691.Google Scholar
  29. 29.
    McCallum, M., G. Fuller, and S. Owa, From hyper NA to low NA. Microelectronic Engineering, 2006. 83: pp. 667–671.CrossRefGoogle Scholar
  30. 30.
    Hewett, J., Immersion ideas extend optical lithography., 2006 (April).Google Scholar
  31. 31.
    Tounai, K., et al., Resolution improvement with annular illumination. Proc. SPIE, 1992. 1674: p. 1753.Google Scholar
  32. 32.
    Shiraishi, N., et al., New image technique for 64 M-DRAM. Proc. SPIE, 1992. 1674: p. 1741.Google Scholar
  33. 33.
    Levenson, M.D., N.S. Viswanathan, and R.A. Simpson, Improving resolution in photolithography with a phase-shifting mask. IEEE Trans. Electron. Devices, 1982. ED-29: p. 1828.CrossRefGoogle Scholar
  34. 34.
    Pelka, J. and W. Henke, Simulation and optimization of phase-shift masks for printing of contact holes. Microelectronic Engineering, 1994. 26: pp. 1–26.CrossRefGoogle Scholar
  35. 35.
    Cui, Z., P.D. Prewett, and S. Johnson, Transmission and side-lobe effect in attenuated phase shift masks. Microelectronic Engineering, 1995. 27: p. 259.CrossRefGoogle Scholar
  36. 36.
    Hand, A., Advanced Masks Help Keep Photolithography Alive. Semiconductor International, 2007 (September).Google Scholar
  37. 37.
    Van Den Broeke, D., et al., Complex 2D pattern lithography at λ/4 resolution using chromeless phase lithography (CPL). Proc. SPIE, 2002. 4691: p. 196.CrossRefGoogle Scholar
  38. 38.
    Chen, J.F., et al., Manufacturing at k 1 = 0.2 with chromeless phase lithography. Solid State Technology, 2002 (June).Google Scholar
  39. 39.
    Levenson, M.D., Extending the lifetime of optical lithography by wave-front engineering. Jpn. J. Appl. Phys., 1994. 33(12B): p. 6765.CrossRefGoogle Scholar
  40. 40.
    Cui, Z., et al., Optical proximity correction by grey tone photolithography. Microelectronic Engineering, 2000. 53: p. 153.CrossRefGoogle Scholar
  41. 41.
    Mack, C.A., Scattering bars. Solid State Technology, 2003 (November).Google Scholar
  42. 42.
    Otto, O.W., et al., Automatic optical proximity correction: a rule-based approach. Proc. SPIE, 1994. 2197: p. 278.CrossRefGoogle Scholar
  43. 43.
    Rieger, M.L. and J.P. Stirniman, Using behavior modelling for proximity correction. Proc. SPIE, 1994. 2197: p. 371.CrossRefGoogle Scholar
  44. 44.
    Information available from Synopsys Inc. (web link:
  45. 45.
    Gupta, P., et al., Performance-driven optical proximity correction for mask cost reduction. J. Micro/Nanolith. MEMS MOEMS, 2007. 6: p. 031005.CrossRefGoogle Scholar
  46. 46.
    Yu, P., S.X. Shi, and D.Z. Pan, True process variation aware optical proximity correction with variational lithography modeling and model calibration. J. Micro/Nanolith. MEMS MOEMS, 2007. 6: p. 031004.CrossRefGoogle Scholar
  47. 47.
    Information available from Luminescent Inc. (web link:
  48. 48.
    Saleh, B.E.A. and S.I. Sayegh, Reductions of errors of microphotographic reproductions by optical corrections of original masks. Optical Engg., 1981. 20: pp. 781–784.Google Scholar
  49. 49.
    Pang, L., Y. Liu, and D. Abrams, Inverse lithography technology (ILT): What is the impact to the photomask industry ? Proc. SPIE, 2006. 6283.Google Scholar
  50. 50.
    Cui, Z. and J. Du, Investigation of OPC mask distortion effect. Proc. SPIE, 2001. 4404.Google Scholar
  51. 51.
    Hector, S., Behind the photomask, in Global Semiconductor Forum. 2005.Google Scholar
  52. 52.
    Rai-choudhury, P. (Editor), Handbook of Microlithograhy, Micromachining and Microfabrication, Vol. 1. 1997: SPIE Press.Google Scholar
  53. 53.
    Zant, P.V., Microchip Fabrication, 5th Edition. 2004: McGraw-Hill.Google Scholar
  54. 54.
    Ito, H. and C.G. Willson, Polymers in Electronics, in Symposium Series 242, T. Davidson, Editor. 1984, American Chemical Society: Washington, D.C. p. 11.Google Scholar
  55. 55.
    Reichmanis, E. and L.F. Thompson, Chemistry and processes for deep-UV resists. Microelectronic Engineering, 1991. 13: p. 3.CrossRefGoogle Scholar
  56. 56.
    Ruede, D., M. Ercken, and T. Borgers, The impact of airborne molecular bases on DUV photoresists. Solid State Technology, 2001 (August).Google Scholar
  57. 57.
    Slezak, M., Multilayer resist strategies. Solid State Technology, 2003 (July).Google Scholar
  58. 58.
    Nalamasu, O., et al., Single-layer resist design for 193 nm lithography. Solid State Technology, 1999 (May).Google Scholar
  59. 59.
    Peters, L., Photoresists Meet the 193 nm Milestone. Semiconductor International, 2005 (February).Google Scholar
  60. 60.
    Wei, Y., K. Petrillo, and P.A. Benson, Evaluating Topcoat Options for Immersion Litho Resists. Semiconductor International, 2006 (July).Google Scholar
  61. 61.
    Information available from Advanced Surface Microscopy, Inc. (web link:
  62. 62.
    Mack, C.A., The Lithography Expert: Line-edge Roughness, Part 1. Microlithography World, 2007 (February).Google Scholar
  63. 63.
    Cutler, C.A., J.F. Mackevich, and J. Li, Effect of polymer molecular weight on AFM polymer aggregate size and LER of EUV resists. Proc. SPIE, 2003. 5037: p. 406.CrossRefGoogle Scholar
  64. 64.
    Gallatin, G.M., Resist blur and line edge roughness. Proc. SPIE, 2005. 5754: p. 38.CrossRefGoogle Scholar
  65. 65.
    Braun, A.E., Line Edge Roughness is Here to Stay. Semiconductor International, 2005 (Feburary).Google Scholar
  66. 66.
    Lassig, S. and E. Hudson, Integrating dielectric etching with 193 nm resists. Solid State Technology, 2002 (October).Google Scholar
  67. 67.
    Kim, B.-G., et al., Beneath the MEEF. Solid State Technology, 2000 (August).Google Scholar
  68. 68.
    Su, B., et al., Analyzing and characterizing 193 nm resist shrinkage. Solid State Technology, 2001 (May).Google Scholar
  69. 69.
    Czech, G., E. Richter, and O. Wunnicke, 193 nm Resists: A Status Report (Part One). Future Fab Intl., 2002. 12.Google Scholar
  70. 70.
    Cao, H.B. and P.F. Nealey, Comparison of resist collapse properties for deep ultraviolet and 193 nm resist platforms. J. Vac. Sci. Technol., 2000. B18: p. 3303.Google Scholar
  71. 71.
    Miller, M., Yield-aware designs target production issues. Solid State Technology, 2005 (February).Google Scholar
  72. 72.
    Kobayashi, S., et al., Automated hot-spot fixing system applied to the metal layers of 65-nm logic devices. J. Micro/Nanolith. MEMS MOEMS, 2007. 6: p. 031010.CrossRefGoogle Scholar
  73. 73.
    Ho, J., et al., Lithography-simulation-based design for manufacturability rule development: an integrated circuit design house's approach. J. Micro/Nanolith. MEMS MOEMS, 2007. 6: p. 031008.CrossRefGoogle Scholar
  74. 74.
    Mansfield, S., G. Han, and L. Liebmann, Through-process modeling for design-for-manufacturability applications. J. Micro/Nanolith. MEMS MOEMS, 2007. 6: p. 031007.CrossRefGoogle Scholar
  75. 75.
    Information available from Clear Shape Technologies, Inc. (web link:
  76. 76.
    Staud, W., et al., Subwavelength Imaging at k 1 <0.3. Semiconductor International, 2005 (September).Google Scholar
  77. 77.
    Levenson, M.D., Double, double, toil and trouble! Solid State Technology, 2007 (April).Google Scholar
  78. 78.
    ITRS 2006 Update, published by ITRS, 2006 (web link:
  79. 79.
    Hand, A., Double Patterning Wrings More from Immersion Lithography. Semiconductor International, 2007 (February).Google Scholar
  80. 80.
    Blaikie, R.J., et al., Nanolithography using optical contact exposure in the evanescent near field. Microelectronic Engineering, 1999. 46: p. 85.CrossRefGoogle Scholar
  81. 81.
    Alkaisi, M.M., et al., Sub-diffraction-limited patterning using evanescent near-field optical lithography. Appl. Phys. Lett., 1999. 75(22): p. 3560.CrossRefGoogle Scholar
  82. 82.
    Barnes, W.L., Surface plasmon–polariton length scales: a route to sub-wavelength optics. J. Opt. A: Pure Appl. Opt., 2006. 8: pp. S87–S93.CrossRefGoogle Scholar
  83. 83.
    Luo, X. and T. Ishihara, Surface plasmon resonant interference nanolithography technique. Appl. Phys. Lett., 2004. 84(23): p. 4780.CrossRefGoogle Scholar
  84. 84.
    Goodberlet, J.G. and H. Kavak, Patterning sub-50 nm features with near-field embedded-amplitude masks. Appl. Phys. Lett., 2002. 81(7): p. 1315.CrossRefGoogle Scholar
  85. 85.
    Fang, N., et al., Sub-diffraction-limited optical imaging with a silver superlens. Science, 2005. 308: p. 534.CrossRefGoogle Scholar
  86. 86.
    Blaikie, R.J., D.O.S. Melville, and M.M. Alkaisi, Super-resolution near-field lithography using planar silver lenses: a review of recent developments. Microelectronic Engineering, 2006. 83: p. 723–729.CrossRefGoogle Scholar
  87. 87.
    Beesley, M.J. and J.G. Castledine, The use of photoresist as a holographic recording medium. Appl. Opt., 1970. 9: p. 2720.CrossRefGoogle Scholar
  88. 88.
    Zaidi, S.H. and S.R.J. Brueck, High aspect-ratio holographic photoresist gratings. Appl. Opt., 1988. 27: pp. 2999–3002.CrossRefGoogle Scholar
  89. 89.
    Brueck, S.R.J., Optical and interferometric lithography – Nanotechnology enablers. Proc. IEEE, 2005. 93(10): p.1074.CrossRefGoogle Scholar
  90. 90.
    Savas, T.A., et al., Achromatic interferometric lithography for 100-nm-period gratings and grids. J. Vac. Sci. Technol., 1995. B13(6): p. 2732.Google Scholar
  91. 91.
    Solak, H.H., et al., Photon-beam lithography reaches 12.5 nm half-pitch resolution. J. Vac. Sci. Technol., 2007. B25: p. 91.Google Scholar
  92. 92.
    Campbell, M., et al., Fabrication of photonic crystals for the visible spectrum by holographic lithography. Nature, 2000. 404: pp. 53–56.CrossRefGoogle Scholar
  93. 93.
    Ross, C.A., et al., Magnetic behavior of lithographically patterned particle arrays. J. Appl. Phys., 2002. 91: pp. 6848–6853.CrossRefGoogle Scholar
  94. 94.
    Pang, Y.K., et al., Chiral microstructures (spirals) fabrication by holographic lithography. Opt. Express, 2005. 13(19): p. 7615.CrossRefGoogle Scholar
  95. 95.
    Fritze, M., et al., Hybrid optical maskless lithography: Scaling beyond the 45 nm node. J. Vac. Sci. Technol., 2005. 23(6): p. 2743.CrossRefGoogle Scholar
  96. 96.
    Chen, X. and S.R.J. Brueck, Imaging interferometric lithography: a wavelength division multiplex approach to extending optical lithography. J. Vac. Sci. Technol., 1998. B16 (6): p. 3392.Google Scholar
  97. 97.
    Resor, G., Burn Lin's wish list for optical lithography: eliminate the mask. Solid State Technology, 2007 (March).Google Scholar
  98. 98.
    Martinsson, H., et al., Current status of optical maskless lithography. J. Microlith. Microfab. Microsyst., 2005. 4(1): p. 011003.CrossRefGoogle Scholar
  99. 99.
    Burns, G.A. and J.A. Schoeffel, Performance evaluation of the ATEQ CORE-2000 scanning laser reticle writer. Proc. SPIE, 1987. 772: pp. 55–64.Google Scholar
  100. 100.
    Jackson, C.A., et al., DUV laser lithography for photomask fabrication. Proc. SPIE, 2004. 5377: pp. 1005–1016.CrossRefGoogle Scholar
  101. 101.
    Ljungblad, U., et al., New laser pattern generator for DUV using a spatial light modulator. Microelectronic Engineering, 2001. 57–58: pp. 23–29.CrossRefGoogle Scholar
  102. 102.
    Gil, D., et al., Parallel maskless optical lithography for prototyping, low-volume production, and research. J. Vac. Sci. Technol., 2002. B20(6): p. 2597.Google Scholar
  103. 103.
    Klosner, M. and K. Jain, Massively parallel, large-area maskless lithography. Appl. Phys. Lett., 2004. 84(15): p. 2880.CrossRefGoogle Scholar
  104. 104.
    Yao, M.-J., et al., Application of Sigma7500 pattern generator to X architecture and 45-nm generation mask making. Proc. SPIE, 2007. 6607.Google Scholar
  105. 105.
    Tanaka, T., H.-B. Sun, and S. Kawata, Rapid sub-diffraction-limit laser micro nano processing in a threshold material system. Appl. Phys. Lett., 2002. 80(2): p. 312.CrossRefGoogle Scholar
  106. 106.
    Haske, W., et al., 65 nm feature sizes using visible wavelength 3-D multiphoton lithography. Opt. Express, 2007. 15(6): p. 3426.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Rutherford Appleton LaboratoryDidcotUK

Personalised recommendations