Influence of Codon Bias on the Expression of Foreign Genes in Microalgae

  • Markus Heitzer
  • Almut Eckert
  • Markus Fuhrmann
  • Christoph Griesbeck
Part of the Advances in Experimental Medicine and Biology book series (volume 616)


The expression of functional proteins in heterologous hosts is a core technique of modern biotechnology. The transfer to a suitable expression system is not always achieved easily because of several reasons: genes from different origins might contain codons that are rarely used in the desired host or even bear noncanonical codons, or the genes might hide expression-limiting regulatory elements within their coding sequence. These problems can also be observed when introducing foreign genes into genomes of microalgae as described in a growing number of detailed studies on transgene expression in these organisms. Particularly important for the use of algae as photosynthetic cell factories is a fundamental understanding of the influence of a foreign gene’s codon composition on its expression efficiency. Therefore, the effect of codon usage of a chimeric protein on expression frequency and product accumulation in the green alga Chlamydomonas reinhardtii was analyzed. This fusion protein combines a constant region encoding the zeocin binding protein Ble with two different gene variants for the green fluorescent protein (GFP). It is shown that codon bias significantly affects the expression, but barely influences the final protein accumulation in this case.


Green Fluorescent Protein Codon Usage Foreign Gene Synonymous Codon Codon Bias 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dong H, Nilsson L, Kurland CG. Covariation of tRNA abundance and codon usage in Escherichia coli at different growth rates. J Mol Biol 1996; 260(5):649–63.PubMedCrossRefGoogle Scholar
  2. 2.
    Kurland C, Gallant J. Errors of heterologous protein expression. Curr Opin Biotechnol 1996; 7(5):489–93.PubMedCrossRefGoogle Scholar
  3. 3.
    Goldman E, Rosenberg AH, Zubay G et al. Consecutive low-usage leucine codons block translation only when near the 5′ end of a message in Escherichia coli. J Mol Biol 1995; 245(5):467–73.PubMedCrossRefGoogle Scholar
  4. 4.
    Novy R, Drott D, Yeager K. Overcoming the codon bias of E. coli for enhanced protein expression. Innovations 2001; 12:1–3.Google Scholar
  5. 5.
    Sinclair G, Choy FY. Synonymous codon usage bias and the expression of human glucocerebrosidase in the methylotrophic yeast, Pichia pastoris. Protein Expr Purif 2002; 26(1):96–105.PubMedCrossRefGoogle Scholar
  6. 6.
    Janatova I, Costaglioli P, Wesche J et al. Development of a reporter system for the yeast Schwanniomyces occidentalis: Influence of DNA composition and codon usage. Yeast 2003; 20(8):687–701.PubMedCrossRefGoogle Scholar
  7. 7.
    Friberg M, von Rohr P, Gonnet G. Limitations of codon adaptation index and other coding DNA-based features for prediction of protein expression in Saccharomyces cerevisiae. Yeast 2004; 21(13):1083–93.PubMedCrossRefGoogle Scholar
  8. 8.
    Viotti A, Balducci C, Weil JH. Adaptation of the tRNA population of maize endosperm for zein synthesis. Biochim Biophys Acta 1978; 517(1):125–32.PubMedGoogle Scholar
  9. 9.
    Chiapello H, Lisacek F, Caboche M et al. Codon usage and gene function are related in sequences of Arabidopsis thaliana. Gene 1998; 209(1–2):GC1–GC38.PubMedCrossRefGoogle Scholar
  10. 10.
    Carlini DB, Stephan W. In vivo introduction of unpreferred synonymous codons into the Drosophila Adh gene results in reduced levels of ADH protein. Genetics 2003; 163(1):239–43.PubMedGoogle Scholar
  11. 11.
    Slimko EM, Lester HA. Codon optimization of Caenorhabditis elegans GluCl ion channel genes for mammalian cells dramatically improves expression levels. J Neurosci Methods 2003; 124(1):75–81.PubMedCrossRefGoogle Scholar
  12. 12.
    Apt KE, Kroth-Pancic PG, Grossman AR. Stable nuclear transformation of the diatom Phaeodactylum tricornutum. Mol Gen Genet 1996; 252(5):572–9.PubMedGoogle Scholar
  13. 13.
    Falciatore A, Casotti R, Leblanc C et al. Transformation of nonselectable reporter genes in marine diatoms. Mar Biotechnol (NY) 1999; 1(3):239–251.CrossRefGoogle Scholar
  14. 14.
    Montsant A, Jabbari K, Maheswari U et al. Comparative genomics of the pennate diatom Phaeodactylum tricornutum. Plant Physiol 2005; 137(2):500–13.PubMedCrossRefGoogle Scholar
  15. 15.
    Zaslavskaia LA, Lippmeier JC, Kroth PG et al. Transformation of the diatom Phaeodactylum tricornutum (Bacillariophyceae) with a variety of selectable marker and reporter genes. Journal of Appl Phycol 2000; 36(2):379–386.CrossRefGoogle Scholar
  16. 16.
    Zaslavskaia LA, Lippmeier JC, Shih C et al. Trophic conversion of an obligate photoautotrophic organism through metabolic engineering. Science 2001; 292(5524):2073–2075.PubMedCrossRefGoogle Scholar
  17. 17.
    Leon-Banares R, Gonzalez-Ballester D, Galvan A et al. Transgenic microalgae as green cell-factories. Trends Biotechnol 2004; 22(1):45–52.PubMedCrossRefGoogle Scholar
  18. 18.
    Franklin S, Ngo B, Efuet E et al. Development of a GFP reporter gene for Chlamydomonas reinhardtii chloroplast. Plant J 2002; 30(6):733–44.PubMedCrossRefGoogle Scholar
  19. 19.
    Mayfield SP, Schultz J. Development of a luciferase reporter gene, luxCt, for Chlamydomonas reinhardtii chloroplast. Plant J 2004; 37(3):449–58.PubMedCrossRefGoogle Scholar
  20. 20.
    Mayfield SP, Franklin SE, Lerner RA. Expression and assembly of a fully active antibody in algae. Proc Natl Acad Sci USA 2003; 100(2):438–42.PubMedCrossRefGoogle Scholar
  21. 21.
    Mayfield SP, Franklin SE. Expression of human antibodies in eukaryotic micro-algae. Vaccine 2005; 23(15):1828–32.PubMedCrossRefGoogle Scholar
  22. 22.
    Fuhrmann M, Oertel W, Hegemann P. A synthetic gene coding for the green fluorescent protein (GFP) is a versatile reporter in Chlamydomonas reinhardtii. Plant J 1999; 19(3):353–61.PubMedCrossRefGoogle Scholar
  23. 23.
    Ender F, Godl K, Wenzl S et al. Evidence for autocatalytic cross-linking of hydroxyproline-rich glycoproteins during extracellular matrix assembly in Volvox. Plant Cell 2002; 14(5):1147–60.PubMedCrossRefGoogle Scholar
  24. 24.
    Fuhrmann M, Hausherr A, Ferbitz L et al. Monitoring dynamic expression of nuclear genes in Chlamydomonas reinhardtii by using a synthetic luciferase reporter gene. Plant Mol Biol 2004; 55(6):869–81.PubMedGoogle Scholar
  25. 25.
    Zorin B, Hegemann P, Sizova I. Nuclear-gene targeting by using single-stranded DNA avoids illegitimate DNA integration in Chlamydomonas reinhardtii. Eukaryot Cell 2005; 4(7):1264–72.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2007

Authors and Affiliations

  • Markus Heitzer
    • 1
  • Almut Eckert
    • 1
  • Markus Fuhrmann
    • 2
  • Christoph Griesbeck
    • 1
  1. 1.Kompetenzzentrum für Fluoreszente BioanalytikUniversität RegensburgRegensburgGermany
  2. 2.Sloning BioTechnologyPuchheimGermany

Personalised recommendations