Molecular Biology and the Biotechnological Potential of Diatoms

  • Peter Kroth
Part of the Advances in Experimental Medicine and Biology book series (volume 616)


Diatoms are unicellular photoautotrophic eukaryotes that play an important role in ecology by fixing large amounts of CO2 in the oceans. Because they evolved by secondary endocytobiosis—a process of uptake of a eukaryotic alga into another eukaryotic cell—they have a rather unusual cell biology and genetic constitution. Diatoms are also of biotechnological interest since they produce highly unsaturated fatty acids. In addition they are able to form delicately ornate cell walls made of amorphous silica. Understanding and modifying the processes of biomineralization in diatoms might result in new nanotechnological processes. Therefore recent advances in molecular genomics and the development of genetic tools for diatoms might pave the way for biotechnological modification and utilization of diatoms. In this chapter I will briefly characterize these extraordinary organisms, give some insights into the actual advances in molecular biology of diatoms and present some examples for the potential future use of diatoms in algal biotechnology.


Marine Diatom Phaeodactylum Tricornutum Eukaryotic Alga Thalassiosira Pseudonana Diatom Phaeodactylum Tricornutum 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lind JL, Heimann EA, van Vliet C et al. Substratum adhesion and gliding in a diatom are mediated by extracellular proteoglycans. Planta 1997; 203:213–221.PubMedCrossRefGoogle Scholar
  2. 2.
    Lee RE. Phycology. Cambridge University Press, 1989.Google Scholar
  3. 3.
    Kooistra WHCF, De Stefano M, Mann DG et al. The phylogeny of the diatoms. Progr Mol Subcell Biol 2003; 33:59–97.Google Scholar
  4. 4.
    Norton TA, Melkonian M, Andersen RA. Algal biodiversity. Phycologia 1996; 35:308–326.Google Scholar
  5. 5.
    Round FE, Crawford RM, Mann DG. The diatoms: Biology and morphology of the genera. Cambridge University Press, 2005.Google Scholar
  6. 6.
    Chepurnov VA, Mann DG, Sabbe K et al. Experimental studies on sexual reproduction in diatoms. Int Rev Cytol 2004; 237:91–154.PubMedCrossRefGoogle Scholar
  7. 7.
    Medlin LK, Kooistra WHCF, Gersonde R et al. Evolution of the diatoms (Bacillariophyta). II. Nuclear-Encoded small-subunit rRNA sequence comparisons confirm a paraphyletic origin for te centric diatoms. Mol Biol Evol 1996; 13:67–75.PubMedGoogle Scholar
  8. 8.
    Drum RW, Gordon R. Star Trek replicators and diatom nanotechnology. Trends Biotechnol 2003; 21:325–328.PubMedCrossRefGoogle Scholar
  9. 9.
    Damste JS, Muyzer G, Abbas B et al. The rise of the rhizosolenid diatoms. Science 2004; 304:584–587.PubMedCrossRefGoogle Scholar
  10. 10.
    Harwood DM. Diatomite. In: Stoermer EF, Smol JP, eds. The Diatoms: Applications for the Environmental and Earth Sciences. Cambridge University Press, 1999:436–443.Google Scholar
  11. 11.
    Falkowski PG, Barber RT, Smetacek V. Biogeochemical controls and feedbacks on ocean primary production. Science 1998; 281:200–205.PubMedCrossRefGoogle Scholar
  12. 12.
    Bidle KD, Azam F. Accelerated dissolution of diatom silica by marine bacterial assemblages. Nature 1999; 397:508–512.CrossRefGoogle Scholar
  13. 13.
    Falkowski PG, Katz ME, Knoll AH et al. The evolution of modern eukaryotic phytoplankton. Science 2004; 305:354–360.PubMedCrossRefGoogle Scholar
  14. 14.
    Reinfelder JR, Milligan AJ, Morel FM. The role of the C4 pathway in carbon accumulation and fixation in a marine diatom. Plant Physiol 2004; 135:2106–2111.PubMedCrossRefGoogle Scholar
  15. 15.
    Delwiche CF, Palmer JD. The origin of plastids and their spread via secondary symbiosis. Plant Syst Evol 1997; 11:53–86.Google Scholar
  16. 16.
    Cavalier-Smith T. Genomic reduction and evolution of novel genetic membranes and protein-targeting machinery in eukaryote-eukaryote chimaeras (meta-algae). Philos Trans R Soc Lond B Biol Sci 2003; 358:109–134.PubMedCrossRefGoogle Scholar
  17. 17.
    Gibbs SP. The chloroplast endoplasmic reticulum: Structure, function, and evolutionary significance. Int Rev Cytol 1981; 72:49–99.CrossRefGoogle Scholar
  18. 18.
    Armbrust EV, Berges JA, Bowler C et al. The genome of the diatom Thalassiosira pseudonana: Ecology, evolution, and metabolism. Science 2004; 306:79–86.PubMedCrossRefGoogle Scholar
  19. 19.
    Edlund MB, Stoermer EF. Ecological, Evolutionary, and systematic significance of diatom histories. J Phycol 1997; 33:897–918.CrossRefGoogle Scholar
  20. 20.
    Maheswari U, Montsant A, Goll J et al. The diatom EST database. Nucleic Acids Res 2005; 33(Database Issue):D344–D347.PubMedCrossRefGoogle Scholar
  21. 21.
    Harris, EH. Chlamydomonas as model organism. Annu Rev Plant Physiol Plant Mol Biol 2001; 52:363–406.PubMedCrossRefGoogle Scholar
  22. 22.
    Randolph-Anderson BL, Boynton JE, Gillham NW et al. Further characterization of the respiratory deficient dum-1 mutation of Chlamydomonas reinhardtii and its use as a recipient for mitochondrial transformation. Mol Gen Genet 1993; 236:235–244.PubMedCrossRefGoogle Scholar
  23. 23.
    Boynton JE, Gillham NW. Genetics and transformation of mitochondria in the green alga Chlamydomonas. Methods Enzymol 1996; 264:279–96, (279–296).PubMedCrossRefGoogle Scholar
  24. 24.
    Dunahay TG, Jarvis EE, Roessler PG. Genetic transformation of the diatoms Cyclotella cryptica and Navicula saprophila. J Phycol 1995; 31:1004–1012.CrossRefGoogle Scholar
  25. 25.
    Apt KE, Kroth-Pancic PG, Grossman AR. Stable nuclear transformation of the diatom Phaeodactylum tricornutum. Mol Gen Genet 1996; 252:572–579.PubMedGoogle Scholar
  26. 26.
    Falciatore A, Casotti R, Leblanc C et al. Transformation of nonselectable reporter genes in marine diatoms. Marine Biotechnology 1999; 1:239–251.PubMedCrossRefGoogle Scholar
  27. 27.
    Poulsen N, Kröger N. A new molecular tool for transgenic diatoms: Control of mRNA and protein biosynthesis by an inducible promoter-terminator cassette. FEBS J 2005; 272:3413–3423.PubMedCrossRefGoogle Scholar
  28. 28.
    Fischer H, Robl I, Sumper M et al. Targeting and covalent modification of cell wall and membrane proteins heterologously expressed in the diatom Cylindrotheca fusformis. J Phycol 1999; 35:113–120.CrossRefGoogle Scholar
  29. 29.
    Zaslavskaia LA, Lippmeier JC, Kroth PG et al. Transformation of the diatom Phaeodactylum tricornutum (Bacillariophyceae) with a variety of selectable marker and reporter genes. J Phycol 2000; 36:379–386.CrossRefGoogle Scholar
  30. 30.
    Sanford JC, Smith FD, Russell JA. Optimizing the biolistic process for different biological applications. Methods Enzymol 1993; 217:483–509:483–509.PubMedCrossRefGoogle Scholar
  31. 31.
    Kindle KL. High-frequency nuclear transformation of Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 1990; 87:1228–1232.PubMedCrossRefGoogle Scholar
  32. 32.
    Dunahay TG. Transformation of Chlamydomonas reinhardtii with silicon carbide whiskers. Biotech 1993; 15:452–460.Google Scholar
  33. 33.
    Shimogawara K, Fujiwara S, Grossman A et al. High-efficiency transformation of Chlamydomonas reinhardtii by electroporation. Genetics 1998; 148:1821–1828.PubMedGoogle Scholar
  34. 34.
    Tanaka Y, Nakatsuma D, Harada H et al. Localization of soluble β-carbonic anhydrase in the marine diatom phaeodactylum tricornutum. Sorting to the Chloroplast and Cluster Formation on the Girdle Lamellae. Plant Physiology 2005; 138:207–217.PubMedCrossRefGoogle Scholar
  35. 35.
    Kilian O, Kroth PG. Identification and characterization of a new conserved motif within the presequence of proteins targeted into complex diatom plastids. Plant J 2005; 41:175–183.PubMedCrossRefGoogle Scholar
  36. 36.
    Drocourt D, Calmels T, Reynes JP et al. Cassettes of the Streptoalloteichus hindustanus ble gene for transformation of lower and higher eukaryotes to phleomycin resistance. Nucleic Acids Res 1990; 18:4009.PubMedCrossRefGoogle Scholar
  37. 37.
    Falciatore A, d’Alcala MR, Croot P et al. Perception of environmental signal by a marine diatom. Science 2000; 288:2363–2366.PubMedCrossRefGoogle Scholar
  38. 38.
    Apt KE, Zaslavkaia L, Lippmeier JC et al. In vivo characterization of diatom multipartite plastid targeting signals. J Cell Sci 2002; 115:4061–4069.PubMedCrossRefGoogle Scholar
  39. 39.
    van Dijk K, Marley KE, Jeong BR et al. Monomethyl histone H3 lysine 4 as an epigenetic mark for silenced euchromatin in Chlamydomonas. Plant Cell 2005; 17:2439–2453.PubMedCrossRefGoogle Scholar
  40. 40.
    Bateman JM, Purton S. Tools for chloroplast transformation in Chlamydomonas: Expression vectors and a new dominant selectable marker. Mol Gen Genet 2000; 263:404–410.PubMedCrossRefGoogle Scholar
  41. 41.
    Bogorad L. Engineering chloroplasts: An alternative site for foreign genes, proteins, reactions and products. Trends In Biotechnology 2000; 18:257–263.PubMedCrossRefGoogle Scholar
  42. 42.
    Stoermer EF, Smol JP. Applications and uses of diatoms. In: Stoermer EF, Smol JP, eds. The diatoms: Applications for the environmental and earth Sciences. Cambridge University Press, 1999:3–8.Google Scholar
  43. 43.
    Fryxell GA, Villac MC. Toxic and harmful marine diatoms. In: Stoermer EF, Smol JP, eds. The Diatoms: Applications for the Environmental and Earth Sciences. Cambridge University Press, 1999:419–428.Google Scholar
  44. 44.
    Groben R, Medlin L. In situ hybridization of phytoplankton using fluorescently labeled rRNA probes. Methods Enzymol 2005; 395:299–310.PubMedCrossRefGoogle Scholar
  45. 45.
    Wee KM, Rogers TN, Altan BS et al. Engineering and medical applications of diatoms. J Nanosci Nanotechnol 2005; 5:88–91.PubMedCrossRefGoogle Scholar
  46. 46.
    De Cosa B, Moar W, Lee SB et al. Overexpression of the Bt cry2Aa2 operon in chloroplasts leads to formation of insecticidal crystals. Nat Biotechnol 2001; 19:71–74.PubMedCrossRefGoogle Scholar
  47. 47.
    Mayfield SP, Franklin SE, Lerner RA. Expression and assembly of a fully active antibody in algae. Proc Natl Acad Sci USA 2003; 100:438–442.PubMedCrossRefGoogle Scholar
  48. 48.
    Sun M, Qian K, Su N et al. Foot-and-mouth disease virus VP1 protein fused with cholera toxin B subunit expressed in Chlamydomonas reinhardtii chloroplast. Biotechnol Lett 2003; 25:1087–1092.PubMedCrossRefGoogle Scholar
  49. 49.
    Dunahay TG, Jarvis EE, Dais SS et al. Manipulation of microalgal lipid production using genetic engineering. Appl Biochem Biotech 1996; 57/58:223–231.CrossRefGoogle Scholar
  50. 50.
    Tonon T, Harvey D, Larson TR et al. A long chain polyunsaturated fatty acid production and partitioning to triacylglycerols in four microalgae. Phytochemistry 2002; 61:15–24.PubMedCrossRefGoogle Scholar
  51. 51.
    Apt KE, Behrens PW. Commercial developments in microalgal biotechnology. J Phycol 1999; 35:215–226.CrossRefGoogle Scholar
  52. 52.
    Domergue F, Spiekermann P, Lerchl J et al. New insight into phaeodactylum tricornutum fatty acid metabolism. Cloning and Functional Characterization of Plastidial and Microsomal Delta12-Fatty Acid Desaturases. Plant Physiol 2003; 131:1648–1660.PubMedCrossRefGoogle Scholar
  53. 53.
    Fernandez Sevilla JM, Ceron Garcia MC, Sanchez Miron A et al. Pilot-plant-scale outdoor mixotrophic cultures of Phaeodactylum tricornutum using glycerol in vertical bubble column and airlift photobioreactors: Studies in fed-batch mode. Biotechnol Prog 2004; 20:728–736.PubMedCrossRefGoogle Scholar
  54. 54.
    Zaslavskaia LA, Lippmeier JC, Shih C et al. Trophic obligate conversion of an photoautotrophic organism through metabolic engineering. Science 2001; 292:2073–2075.PubMedCrossRefGoogle Scholar
  55. 55.
    Hamm CE, Merkel R, Springer O et al. Architecture and material properties of diatom shells provide effective mechanical protection. Nature 2003; 421:841–843.PubMedCrossRefGoogle Scholar
  56. 56.
    Hildebrand M, Volcani BE, Gassmann W et al. A gene family of silicon transporters. Nature 1997; 385:688–689.PubMedCrossRefGoogle Scholar
  57. 57.
    Pickett-Heaps J, Schmid AMM, Edgar LA. The cell biology of diatom valve formation. Progr Phycol Res 1990; 7:1–168.Google Scholar
  58. 58.
    Kröger N, Wetherbee R. Pleuralins are involved in Theca differentiation bin the diatom Cylindrotheca fusiformis. Protist 2000; 151:263–273.PubMedCrossRefGoogle Scholar
  59. 59.
    Poulsen N, Sumper M, Kröger N. Biosilica formation in diatoms: Characterization of native silaffin-2 and its role in silica morphogenesis. Proc Nat Acad Sci 2003; 100:12075–12080.PubMedCrossRefGoogle Scholar
  60. 60.
    Sumper M, Brunner E, Lehmann G. Biomineralization in diatoms: Characterization of novel polyamines associated with silica. FEBS Lett 2005; 579:3765–3769.PubMedCrossRefGoogle Scholar
  61. 61.
    Kröger N, Deutzmann R, Bergsdorf C et al. Species-specific polyamines from diatoms control silica morphology. Proc Natl Acad Sci USA 2000; 97:14133–14138.PubMedCrossRefGoogle Scholar
  62. 62.
    Kröger, Lorenz S, Brunner E et al. Self-assembly of highly phosphorylated silaffins and their function in biosilica morphogenesis. Science 2002; 298:584–586.PubMedCrossRefGoogle Scholar
  63. 63.
    Kröger N, Bergsdorf C, Sumper M. Frustulins: Domain conservation in a protein family associated with diatom cell walls. Eur J Biochem 1996; 239:259–264.PubMedCrossRefGoogle Scholar
  64. 64.
    Sumper M. A phase separation model for the nanopatterning of diatom biosilica. Science 2002; 295:2430–2433.PubMedCrossRefGoogle Scholar
  65. 65.
    Hildebrand M. The prospects of manipulating diatom silica nanostructure. J Nanosci Nanotechnol 2005; 5:146–157.PubMedCrossRefGoogle Scholar
  66. 66.
    Losic D, Mitchell JG, Voelcker NH. Complex gold nanostructures derived by templating from diatom frustules. Chem Commun (Camb) 2005;4905–4907.Google Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2007

Authors and Affiliations

  • Peter Kroth
    • 1
  1. 1.Fachbereich BiologieUniversität KonstanzKonstanzGermany

Personalised recommendations