Cyanobacteria are a diverse and successful group of bacteria defined by their ability to carry out oxygenic photosynthesis. They occupy diverse ecological niches and are important primary producers in the oceans. Cyanobacteria are amenable to genetic manipulation. Some strains are naturally transformable. Many others have been transformed in the lab by conjugation or electroporation. The ability to transform cyanobacteria has been determinant in the development of the molecular biology of these organisms and has been the basis of many of their biotechnological applications. Cyanobacteria are the source of natural products and toxins of potential use and can be engineered to synthesize substances of biotechnological interest. Their high protein and vitamin content makes them useful as a dietary supplement. Because of their ability to occupy diverse ecological niches, they can be used to deliver to the medium substances of interest or as biosensors.


Methyl Parathion Oxygenic Photosynthesis Bacillus Thuringiensis Subsp Diverse Ecological Niche Mosquito Larvicidal Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rodriguez-Ezpeleta N, Brinkmann H, Burey SC et al. Monophyly of primary photosynthetic eukaryotes: Green plants, red algae, and glaucophytes. Curr Biol 2005; 15:1325–1330.PubMedCrossRefGoogle Scholar
  2. 2.
    Bhattacharya D, Yoon HS, Hackett JD. Photosynthetic eukaryotes unite: Endosymbiosis connects the dots. Bioessays 2004; 26:50–60.PubMedCrossRefGoogle Scholar
  3. 3.
    Ciferri O. Spirulina, the edible microorganism. Microbiol Rev 1983; 47:551–578.PubMedGoogle Scholar
  4. 4.
    Kay RA. Microalgae as food and supplement. Crit Rev Food Sci Nutr 1991; 30:555–573.PubMedCrossRefGoogle Scholar
  5. 5.
    Teas J, Hebert JR, Fitton JH et al. Algae — A poor man’s HAART? Med Hypotheses 2004; 62:507–510.PubMedCrossRefGoogle Scholar
  6. 6.
    Burja AM, Banaigs B, Abou-Mansour E et al. Marine cyanobacteria-a prolific source of natural products. Tetrahedron 2001; 57:9347–9377.CrossRefGoogle Scholar
  7. 7.
    Burja AM, Dhamwichukorn S, Wright PC. Cyanobacterial postgenomic research and systems biology. Trends Biotechnol 2003; 21:504–511.PubMedCrossRefGoogle Scholar
  8. 8.
    Thiel T. Genetic analysis of cyanobacteria. In: Bryant DA, ed. The Molecular Biology of Cyanobacteria. Vol 1. Dordrecht: Kluwer Academic Publishers, 1994:581–611.Google Scholar
  9. 9.
    Elhai J. Genetic techniques appropriate for the biotechnological exploitation of cyanobacteria. J Appl Phycol 1994; 6:177–186.CrossRefGoogle Scholar
  10. 10.
    Shestakov SV, Khyen NT. Evidence for genetic transformation in blue-green alga Anacystis nidulans. Mol Gen Genet 1970; 107:372–375.PubMedCrossRefGoogle Scholar
  11. 11.
    Wolk CP, Kraus J. Two approaches to obtaining low, extracellular deoxyribonuclease activity in cultures of heterocyst-forming cyanobacteria. Arch Microbiol 1982; 131:302–307.CrossRefGoogle Scholar
  12. 12.
    Chauvat F, Rouet P, Bottin H et al. Mutagenesis by random cloning of an Escherichia coli kanamycin resistance gene into the genome of the cyanobacterium Synechocystis PCC 6803: Selection of mutants defective in photosynthesis. Mol Gen Genet 1989; 216:51–59.PubMedCrossRefGoogle Scholar
  13. 13.
    Dzelzkalns VA, Bogorad L. Molecular analysis of a mutant defective in photosynthetic oxygen evolution and isolation of a complementing clone by a novel screening procedure. EMBO J 1988; 7:333–338.PubMedGoogle Scholar
  14. 14.
    Martinez-Ferez IM, Vioque A. Nucleotide sequence of the phytoene desaturase gene from Synechocystis sp. PCC 6803 and characterization of a new mutation which confers resistance to the herbicide norflurazon. Plant Mol Biol 1992; 18:981–983.PubMedCrossRefGoogle Scholar
  15. 15.
    Muhlenhoff U, Chauvat F. Gene transfer and manipulation in the thermophilic cyanobacterium Synechococcus elongatus. Mol Gen Genet 1996; 252:93–100.PubMedCrossRefGoogle Scholar
  16. 16.
    Bruns BU, Briggs WR, Grossman AR. Molecular characterization of phycobilisome regulatory mutants of Fremyella diplosiphon. J Bacteriol 1989; 171:901–908.PubMedGoogle Scholar
  17. 17.
    Wolk CP, Vonshak A, Kehoe P et al. Construction of shuttle vectors capable of conjugative transfer from Escherichia coli to nitrogen-fixing filamentous cyanobacteria. Proc Natl Acad Sci USA 1984; 81:1561–1565.PubMedCrossRefGoogle Scholar
  18. 18.
    Thiel T, Wolk CP. Conjugal transfer of plasmids to cyanobacteria. Methods Enzymol 1987; 153:232–243.PubMedCrossRefGoogle Scholar
  19. 19.
    Elhai J, Wolk CP. Conjugal transfer of DNA to cyanobacteria. Methods Enzymol 1988; 167:747–754.PubMedCrossRefGoogle Scholar
  20. 20.
    Cai YP, Wolk CP. Use of a conditionally lethal gene in Anabaena sp. strain PCC 7120 to select for double recombinants and to entrap insertion sequences. J Bacteriol 1990; 172:3138–3145.PubMedGoogle Scholar
  21. 21.
    Black TA, Cai Y, Wolk CP. Spatial expression and autoregulation of hetR, a gene involved in the control of heterocyst development in Anabaena. Mol Microbiol 1993; 9:77–84.PubMedCrossRefGoogle Scholar
  22. 22.
    Porter RD. Transformation in cyanobacteria. CRC Crit Rev Microbiol 1987; 13:111–132.CrossRefGoogle Scholar
  23. 23.
    Koksharova OA, Wolk CP. Genetic tools for cyanobacteria. Appl Microbiol Biotechnol 2002; 58:123–137.PubMedCrossRefGoogle Scholar
  24. 24.
    Patterson MLG, Baldwin CL, Bolis CM et al. Antineoplastic activity of cultured blue-green algae (Cyanophyta). J Phycol 1991; 27:530–536.CrossRefGoogle Scholar
  25. 25.
    Boyd MR, Gustafson KR, McMahon JB et al. Discovery of cyanovirin-N, a novel human immunodeficiency virus-inactivating protein that binds viral surface envelope glycoprotein gp120: Potential applications to microbicide development. Antimicrob Agents Chemother 1997; 41:1521–1530.PubMedGoogle Scholar
  26. 26.
    Colleluori DM, Tien D, Kang F et al. Expression, purification, and characterization of recombinant cyanovirin-N for vaginal anti-HIV microbicide development. Protein Expr Purif 2005; 39:229–236.PubMedCrossRefGoogle Scholar
  27. 27.
    Asada Y, Miyake M, Miyake J et al. Photosynthetic accumulation of poly-(hydroxybutyrate) by cyanobacteria—the metabolism and potential for CO2 recycling. Int J Biol Macromol 1999; 25:37–42.PubMedCrossRefGoogle Scholar
  28. 28.
    Sharma L, Mallick N. Enhancement of poly-beta-hydroxybutyrate accumulation in Nostoc muscorum under mixotrophy, chemoheterotrophy and limitations of gas-exchange. Biotechnol Lett 2005; 27:59–62.PubMedCrossRefGoogle Scholar
  29. 29.
    Miyake M, Takase K, Narato M et al. Polyhydroxybutyrate production from carbon dioxide by cyanobacteria. Appl Biochem Biotechnol 2000; 84–86:991–1002.PubMedCrossRefGoogle Scholar
  30. 30.
    Taroncher-Oldenburg G, Nishina K, Stephanopoulos G. Identification and analysis of the polyhydroxyalkanoate-specific beta-ketothiolase and acetoacetyl coenzyme A reductase genes in the cyanobacterium Synechocystis sp. strain PCC6803. Appl Environ Microbiol 2000; 66:4440–4448.PubMedCrossRefGoogle Scholar
  31. 31.
    Hein S, Tran H, Steinbuchel A. Synechocystis sp. PCC6803 possesses a two-component polyhydroxyalkanoic acid synthase similar to that of anoxygenic purple sulfur bacteria. Arch Microbiol 1998; 170:162–170.PubMedCrossRefGoogle Scholar
  32. 32.
    Siddiqui RA, Shaikh SR, Sech LA et al. Omega 3-fatty acids: Health benefits and cellular mechanisms of action. Mini Rev Med Chem 2004; 4:859–871.PubMedGoogle Scholar
  33. 33.
    Takeyama H, Takeda D, Yazawa K et al. Expression of the eicosapentaenoic acid synthesis gene cluster from Shewanella sp. in a transgenic marine cyanobacterium, Synechococcus sp. Microbiology 1997; 143:2725–2731.PubMedGoogle Scholar
  34. 34.
    Yu R, Yamada A, Watanabe K et al. Production of eicosapentaenoic acid by a recombinant marine cyanobacterium, Synechococcus sp. Lipids 2000; 35:1061–1064.PubMedCrossRefGoogle Scholar
  35. 35.
    Simon RD, Weathers P. Determination of the structure of the novel polypeptide containing aspartic acid and arginine which is found in Cyanobacteria. Biochim Biophys Acta 1976; 420:165–176.PubMedGoogle Scholar
  36. 36.
    Li H, Sherman DM, Bao S et al. Pattern of cyanophycin accumulation in nitrogen-fixing and nonnitrogen-fixing cyanobacteria. Arch Microbiol 2001; 176:9–18.PubMedCrossRefGoogle Scholar
  37. 37.
    Schwamborn M. Chemical synthesis of polyaspartates: A biodegradable alternative to currently used polycarboxylate homo-and copolymers. Polym Degrad Stabil 1998; 59:39–45.CrossRefGoogle Scholar
  38. 38.
    Ziegler K, Diener A, Herpin C et al. Molecular characterization of cyanophycin synthetase, the enzyme catalyzing the biosynthesis of the cyanobacterial reserve material multi-L-arginyl-poly-L-aspartate (cyanophycin). Eur J Biochem 1998; 254:154–159.PubMedCrossRefGoogle Scholar
  39. 39.
    Aboulmagd E, Oppermann-Sanio FB, Steinbuchel A. Molecular characterization of the cyanophycin synthetase from Synechocystis sp. strain PCC6308. Arch Microbiol 2000; 174:297–306.PubMedCrossRefGoogle Scholar
  40. 40.
    Krehenbrink M, Oppermann-Sanio FB, Steinbuchel A. Evaluation of noncyanobacterial genome sequences for occurrence of genes encoding proteins homologous to cyanophycin synthetase and cloning of an active cyanophycin synthetase from Acinetobacter sp. strain DSM 587. Arch Microbiol 2002; 177:371–380.PubMedCrossRefGoogle Scholar
  41. 41.
    Hai T, Oppermann-Sanio FB, Steinbuchel A. Molecular characterization of a thermostable cyanophycin synthetase from the thermophilic cyanobacterium Synechococcus sp. strain MA19 and in vitro synthesis of cyanophycin and related polyamides. Appl Environ Microbiol 2002; 68:93–101.PubMedCrossRefGoogle Scholar
  42. 42.
    Harker M, Hirschberg J. Biosynthesis of ketocarotenoids in transgenic cyanobacteria expressing the algal gene for beta-C-4-oxygenase, crtO. FEBS Lett 1997; 404:129–134.PubMedCrossRefGoogle Scholar
  43. 43.
    Mann V, Harker M, Pecker I et al. Metabolic engineering of astaxanthin production in tobacco flowers. Nat Biotechnol 2000; 18:888–892.PubMedCrossRefGoogle Scholar
  44. 44.
    Sorkhoh N, Al-Hasan R, Radwan S et al. Self-cleaning of the Gulf. Nature 1992; 359:109.CrossRefGoogle Scholar
  45. 45.
    Chaillan F, Gugger M, Saliot A et al. Role of cyanobacteria in the biodegradation of crude oil by a tropical cyanobacterial mat. Chemosphere 2005, (in press).Google Scholar
  46. 46.
    Raghukumar C, Vipparty V, David JJ et al. Degradation of crude oil by marine cyanobacteria. Appl Microbiol Biotechnol 2001; 57:433–436.PubMedCrossRefGoogle Scholar
  47. 47.
    Kuritz T, Wolk CP. Use of filamentous cyanobacteria for biodegradation of organic pollutants. Appl Environ Microbiol 1995; 61:234–238.PubMedGoogle Scholar
  48. 48.
    Kuritz T, Bocanera LV, Rivera NS. Dechlorination of lindane by the cyanobacterium Anabaena sp. strain PCC7120 depends on the function of the nir operon. J Bacteriol 1997; 179:3368–3370.PubMedGoogle Scholar
  49. 49.
    Tsoi TV, Zaitsev GM, Plotnikova EG et al. Cloning and expression of the Arthrobacter globiformis KZT1 fcbA gene encoding dehalogenase (4-chlorobenzoate-4-hydroxylase) in Escherichia coli. FEMS Microbiol Lett 1991; 65:165–169.PubMedCrossRefGoogle Scholar
  50. 50.
    Lee SE, Kim JS, Kennedy IR et al. Biotransformation of an organochlorine insecticide, endosulfan, by Anabaena species. J Agric Food Chem 2003; 51:1336–1340.PubMedCrossRefGoogle Scholar
  51. 51.
    Barton JW, Kuritz T, O’Connor LE et al. Reductive transformation of methyl parathion by the cyanobacterium Anabaena sp. strain PCC7120. Appl Microbiol Biotechnol 2004; 65:330–335.PubMedCrossRefGoogle Scholar
  52. 52.
    Meagher RB. Phytoremediation of toxic elemental and organic pollutants. Curr Opin Plant Biol 2000; 3:153–162.PubMedCrossRefGoogle Scholar
  53. 53.
    Lloyd JR, Lovley DR, Macaskie LE. Biotechnological application of metal-reducing microorganisms. Adv Appl Microbiol 2003; 53:85–128.PubMedCrossRefGoogle Scholar
  54. 54.
    McCormick PM, Cannon GC, Heinhorst S. Expression of the copper metallothionein CUPI from Saccharomyces cerevisiae in the cyanobacterium Synechococcus R2-PIM8(smtA). Curr Microbiol 1999; 38:155–162.PubMedCrossRefGoogle Scholar
  55. 55.
    Shao Q, Shi DJ, Hao FY et al. Cloning and expression of metallothionein mutant alpha-KKS-alpha in Anabaena sp. PCC 7120. Mar Pollut Bull 2002; 45:163–167.PubMedCrossRefGoogle Scholar
  56. 56.
    de Maagd RA, Bravo A, Berry C et al. Structure, diversity, and evolution of protein toxins from spore-forming entomopathogenic bacteria. Annu Rev Genet 2003; 37:409–433.PubMedCrossRefGoogle Scholar
  57. 57.
    Schnepf HE, Crickmore N, Van Rie J et al. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev 1998; 62:775–806.PubMedGoogle Scholar
  58. 58.
    Berry C, O’Neil S, Ben-Dov E et al. Complete sequence and organization of pBtoxis, the toxin-coding plasmid of Bacillus thuringiensis subsp. israelensis. Appl Environ Microbiol 2002; 68:5082–5095.PubMedCrossRefGoogle Scholar
  59. 59.
    Margalith Y, Ben-Dov E. Biological Control by Bacillus thuringiensis subsp. israelensis. In: Rechcigl JE, Rechcigl NA, eds. Insect Pest Management: Techniques for Environmental Protection. Boca Raton: CRC Press, 2000:243–301.Google Scholar
  60. 60.
    Pusztai M, Fast P, Gringorten L et al. The mechanism of sunlight-mediated inactivation of Bacillus thuringiensis crystals. Biochem J 1991; 273:43–47.PubMedGoogle Scholar
  61. 61.
    Thiery I, Nicolas L, Rippka R et al. Selection of cyanobacteria isolated from mosquito breeding sites as a potential food source for mosquito larvae. Appl Environ Microbiol 1991; 57:1354–1359.PubMedGoogle Scholar
  62. 62.
    Tandeau de Marsac N, de la Torre F, Szulmajster J. Expression of the larvicidal gene of Bacillus sphaericus 1593M in the cyanobacterium Anacystis nidulans R2. Mol Gen Genet 1987; 209:396–398.PubMedCrossRefGoogle Scholar
  63. 63.
    Murphy RC, Stevens Jr SE. Cloning and expression of the cryIVD gene of Bacillus thuringiensis subsp. israelensis in the cyanobacterium Agmenellum quadruplicatum PR-6 and its resulting larvicidal activity. Appl Environ Microbiol 1992; 58:1650–1655.PubMedGoogle Scholar
  64. 64.
    Wu X, Vennison SJ, Huirong L et al. Mosquito larvicidal activity of transgenic Anabaena strain PCC 7120 expressing combinations of genes from Bacillus thuringiensis subsp. israelensis. Appl Environ Microbiol 1997; 63:4971–4974.Google Scholar
  65. 65.
    Khasdan V, Ben-Dov E, Manasherob R et al. Mosquito larvicidal activity of transgenic Anabaena PCC 7120 expressing toxin genes from Bacillus thuringiensis subsp. israelensis. FEMS Microbiol Lett 2003; 227:189–195.PubMedCrossRefGoogle Scholar
  66. 66.
    Manasherob R, Otieno-Ayayo ZN, Ben-Dov E et al. Enduring toxicity of transgenic Anabaena PCC 7120 expressing mosquito larvicidal genes from Bacillus thuringiensis ssp. israelensis. Environ Microbiol 2003; 5:997–1001.PubMedCrossRefGoogle Scholar
  67. 67.
    Lluisma AO, Karmacharya N, Zarka A et al. Suitability of Anabaena PCC7120 expressing mosquitocidal toxin genes from Bacillus thuringiensis subsp. israelensis for biotechnological application. Appl Microbiol Biotechnol 2001; 57:161–166.PubMedCrossRefGoogle Scholar
  68. 68.
    Manasherob R, Ben-Dov E, Xiaoqiang W et al. Protection from UV-B damage of mosquito larvicidal toxins from Bacillus thuringiensis subsp. israelensis expressed in Anabaena PCC 7120. Curr Microbiol 2002; 45:217–220.PubMedCrossRefGoogle Scholar
  69. 69.
    Belkin S. Microbial whole-cell sensing systems of environmental pollutants. Curr Opin Microbiol 2003; 6:206–212.PubMedCrossRefGoogle Scholar
  70. 70.
    Shao CY, Howe CJ, Porter AJ et al. Novel cyanobacterial biosensor for detection of herbicides. Appl Environ Microbiol 2002; 68:5026–5033.PubMedCrossRefGoogle Scholar
  71. 71.
    Mbeunkui F, Richaud C, Etienne AL et al. Bioavailable nitrate detection in water by an inmobilized luminescent cyanobacterial reporter strain. Appl Microbiol Biotechnol 2002; 60:306–312.PubMedCrossRefGoogle Scholar
  72. 72.
    Tandeau de Marsac N, Houmard J. Adaptation of cyanobacteria to environmental stimuli: New steps towards molecular mechanisms. FEMS Microbiol Rev 1993; 104:119–190.CrossRefGoogle Scholar
  73. 73.
    Grossman AR, Bhaya D, Apt KE et al. Light-harvesting complexes in oxygenic photosynthesis: Diversity, control, and evolution. Annu Rev Genet 1995; 29:231–288.PubMedCrossRefGoogle Scholar
  74. 74.
    Collier JL, Grossman AR. Chlorosis induced by nutrient deprivation in Synechococcus sp. strain PCC 7942: Not all bleaching is the same. J Bacteriol 1992; 174:4718–4726.PubMedGoogle Scholar
  75. 75.
    Gillor O, Harush A, Hadas O et al. A Synechococcus PglnA:luxAB fusion for estimation of nitrogen bioavailability to freshwater cyanobacteria. Appl Environ Microbiol 2003; 69:1465–1474.PubMedCrossRefGoogle Scholar
  76. 76.
    Muro-Pastor MI, Reyes JC, Florencio FJ. Ammonium assimilation in cyanobacteria. Photosynth Res 2005; 83:135–150.PubMedCrossRefGoogle Scholar
  77. 77.
    Gillor O, Hadas O, Post AF et al. Phosphorus bioavailability monitoring by a bioluminiscent cyanobacterial sensor strain. J Phycol 2002; 38:107–115.CrossRefGoogle Scholar
  78. 78.
    Durham KA, Porta D, Twiss MR et al. Construction and initial characterization of a luminescent Synechococcus sp. PCC 7942 Fe-dependent bioreporter. FEMS Microbiol Lett 2002; 209:215–221.PubMedCrossRefGoogle Scholar
  79. 79.
    Porta D, Bullerjahn GS, Durham KA et al. Physiological characterization of a Synechococcus sp. (Cyanophyceae) strain PCC 7942 iron-dependent bioreporter for freshwater environments. J Phycol 2003; 39:64–73.CrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2007

Authors and Affiliations

  • Agustín Vioque
    • 1
  1. 1.Instituto de Bioquímica Vegetal y FotosíntesisUniversidad de Sevilla-CSICSevillaSpain

Personalised recommendations