Advertisement

Nuclear Transformation of Eukaryotic Microalgae

Historical Overview, Achievements and Problems
  • Rosa León
  • Emilio Fernández
Part of the Advances in Experimental Medicine and Biology book series (volume 616)

Abstract

Transformation of microalgae is a first step in their use for biotechnological applications involving foreign protein production or molecular modifications of specific cell metabolic pathways. Since the first reliable achievements of nuclear transformation in Chlamydomonas, other eukaryotic microalgae have become transformed with molecular markers that allow a direct selection. Different methods—glass beads, electroporation, particle bombardment, or Agrobacterium—and constructions have been set up in several organisms and successfully used. However, some problems associated with efficiency, integration, or stability of the transgenes still persist and are analysed herein. Though the number of microalgae species successfully transformed is not very high, prospects for transformation of many more are good enough on the basis of what has been achieved so far.

Keywords

Nitrate Reductase Selectable Marker Phaeodactylum Tricornutum Nuclear Transformation Nitrate Reductase Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Field CB, Behrenfeld MJ, Randerson JT et al. Primary production of the biosphere: Integrating terrestrial and oceanic components. Science 1998; 281:237–240.PubMedCrossRefGoogle Scholar
  2. 2.
    Apt KE, Behrens PW. Commercial developments in microalgal biotechnology. J Phycol 1999; 35:215–226.CrossRefGoogle Scholar
  3. 3.
    Richmond A. Handbook of microalgal culture. Biotechnology and applied phycology. Oxford: Blackwell Science Ltd., 2004.Google Scholar
  4. 4.
    Grossman AR. Paths toward algal genomics. Plant Physiol 2005; 137:410–427.PubMedCrossRefGoogle Scholar
  5. 5.
    Harris E. Chlamydomonas as a model organism. Annu Rev Plant Physiol Plant Mol Biol 2001; 52:363–406.PubMedCrossRefGoogle Scholar
  6. 6.
    In: Rochaix JD, Goldschmidt-Clermont M, Merchant S, eds. The Molecular Biology of Chloroplasts and Mitochondria in Chlamydomonas. Dordtrech: Kluwer Acad Pub., 1998.Google Scholar
  7. 7.
    Franklin SE, Mayfield SP. Prospects for molecular farming in the green alga Chlamydomonas reinhardtii. Curr Opin Plant Biol 2004; 7:159–165.PubMedCrossRefGoogle Scholar
  8. 8.
    Walker TL, Purton S, Becker DK et al. Microalgae as bioreactors. Plant Cell Rep 2005; 24(11):629–641.PubMedCrossRefGoogle Scholar
  9. 9.
    Fernández E, Schnell R, Ranum LP et al. Isolation and characterization of the nitrate reductase structural gene of Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 1989; 86(17):6449–6453.PubMedCrossRefGoogle Scholar
  10. 10.
    Debuchy R, Purton S, Rochaix JD. The argininosuccinate lyase gene of Chlamydomonas reinhardtii: An important tool for nuclear transformation and for correlating the genetic and molecular maps of the ARG7 locus. EMBO J 1989; 8:2803–2809.PubMedGoogle Scholar
  11. 11.
    Stevens DR, Purton S. Genetic engineering of eukaryotic algae: Progress and prospects. J Phycol 1997; 33:713–722.CrossRefGoogle Scholar
  12. 12.
    León-Bańares R, González-Ballester D, Galván A et al. Transgenic microalgae as green cell-factories. Trends Biotechnol 2004; 22:45–52.PubMedCrossRefGoogle Scholar
  13. 13.
    Walker TL, Collet C, Purton S. Algal transgenics in the Genomic era. J Phycol 2005; 41(6):1077–1093.CrossRefGoogle Scholar
  14. 14.
    Kindle KL. Nuclear transformation: Technology and Applications. In: Rochaix JD, Goldschmidt-Clermont M, Merchant S, eds. The Molecular Biology of Chloroplasts and Mitochondria in Chlamydomonas. Dordrecht: Kluwer Acad Pub., 1998:41–61.Google Scholar
  15. 15.
    Purton S, Lumbreras V. Recent Advances in Chlamydomonas transgenics. Protist 1998; 149:23–27.CrossRefGoogle Scholar
  16. 16.
    Fuhrmann M. Expanding the molecular toolkit for Chlamydomonas reinhardtii-from history to new frontiers. Protist 2002; 153:357–364.PubMedCrossRefGoogle Scholar
  17. 17.
    Snell WJ, Pan J, Wang Q. Cilia and flagella revealed: From flagellar assembly in Chlamydomonas to human obesity disorders. Cell 2004; 117:693–697.PubMedCrossRefGoogle Scholar
  18. 18.
    Grossman AR, Harris EE, Hauser C et al. Chlamydomonas reinhardtii at the crossroads of genomics. Eucaryotic Cell 2003; 2(6):1137–1150.CrossRefGoogle Scholar
  19. 19.
    Jarvis EE, Brown LM. Transient expression of firefly luciferase in protoplasts of the green alga Chlorella ellipsoidea. Curr Genet 1991; 19:317–321.CrossRefGoogle Scholar
  20. 20.
    Maruyama M, Horáková I, Honda H et al. Introduction of foreign DNA into Chlorella saccharophila by electroporation. Biotechnol Techn 1994; 8:821–826.CrossRefGoogle Scholar
  21. 21.
    Hawkins R, Nakamura M. Expression of human growth hormone by the eukaryotic alga, Chlorella. Curr Microbiol 1999; 38:335–341.PubMedCrossRefGoogle Scholar
  22. 22.
    Dawson HN, Burlingame R, Cannons AC. Stable transformation of Chlorella: Rescue of nitrate reductase-deficient mutants with the nitrate reductase gene. Curr Microbiol 1997; 35:L365–362.CrossRefGoogle Scholar
  23. 23.
    Chen Y, Wang Y, Sun Y et al. Highly efficient expression of rabbit neutrophil peptide-1 gene in Chlorella ellipsoidea cells. Curr Genet 2001; 39:365–370.PubMedCrossRefGoogle Scholar
  24. 24.
    Kim DH, Kim YT, Cho JJ et al. Stable integration and functional expression of flounder growth hormone gene in transformed microalga, Chlorella ellipsoidea. Mar Biotechnol 2002; 4:63–73.PubMedCrossRefGoogle Scholar
  25. 25.
    Borovsky D. Trypsin-modulating oostatic factor: A potential new larvicide for mosquito control. J Exp Biol 2003; 206:3869–3875.PubMedCrossRefGoogle Scholar
  26. 26.
    Teng C, Qin S, Liu J et al. Transient expression of lacZ in bombarded unicellular green alga Haematococcus pluvialis. J Appl Phycol 2002; 14:495–500.CrossRefGoogle Scholar
  27. 27.
    Sun Y, Yang Z, Gao X et al. Expression of foreign genes in Dunaliella by electroporation. Mol Biotechnol 2005; 30(3):185–192.PubMedCrossRefGoogle Scholar
  28. 28.
    Tan C, Quin S, Zhang Q et al. Establishment of a micro-particle bombardment transformation system for Dunaliella salina. J Microbiol 2005; 43(4):361–365.PubMedGoogle Scholar
  29. 29.
    Geng D, Wang Y, Wang P et al. Stable expression of hepatitis B surface antigen gene in Dunaliella salina. J Appl Phycol 2003; 15:451–456.CrossRefGoogle Scholar
  30. 30.
    Lü YM, Jiang GZ, Niu XL et al. Cloning and functional analyses of two carbonic anhydrase genes from Dunaliella salina. Acta Genet Sin 2005; 31:1157–1166.Google Scholar
  31. 31.
    Walker TL, Becker DK, Collet C. Characterisationof the Dunaliella tertiolecta RbcS genes and their promoter activity in Chlamydomonas reinhardtii. Plant Cell Rep 2005; 23:727–735.PubMedCrossRefGoogle Scholar
  32. 32.
    Apt KE, Kroth-Pancic PG, Grossman AR. Stable nuclear transformation of the diatom Phaeodactylum tricornutum. Molec Gen Genet 1996; 252:572–579.PubMedGoogle Scholar
  33. 33.
    Zaslavskaia LA, Lippmeier JC, Kroth PG et al. Transformation of the diatom Phaeodactylum tricornutum (Bacillariophyceae) with a variety of selectable markers and reporter genes. J Phycol 2000; 36:379–386.CrossRefGoogle Scholar
  34. 34.
    Dunahay TG, Jarvis EE, Roessler PG. Genetic transformation of the diatoms Cyclotella cryptica and Navicula saprophila. J Phycol 1995; 31:1004–1012.CrossRefGoogle Scholar
  35. 35.
    Fischer H, Robl I, Sumper M et al. Targeting and covalent modification of cell wall and membrane proteins heterologously expressed in the diatom Cylindrotheca fusiformis. J Phycol 1999; 35:113–120.CrossRefGoogle Scholar
  36. 36.
    Falciatore A, Casotti R, Leblanc C et al. Transformation of nonselectable reporter genes in Marine Diatoms. Mar Biotechnol 1999; 1:239–251.PubMedCrossRefGoogle Scholar
  37. 37.
    ten Lohuis MR, Miller DJ. Genetic transformation of dinoflagellates (Amphidinium and Symbiodinium): Expression of GUS in microalgae using heterologous promoter constructs. Plant J 1998; 13:427–435.CrossRefGoogle Scholar
  38. 38.
    Schiedlmeier B, Schmitt R, Muller W et al. Nuclear transformation of Volvox carteri. Proc Natl Acad Sci USA 1994; 91:5080–5084.PubMedCrossRefGoogle Scholar
  39. 39.
    Kindle KL. High-frequency nuclear transformation of Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 1990; 87:1228–1232.PubMedCrossRefGoogle Scholar
  40. 40.
    Quesada A, Galván A, Fernández E. Identification of nitrate transporters in Chlamydomonas reinhardtii. Plant J 1994; 5:407–419.PubMedCrossRefGoogle Scholar
  41. 41.
    Dunahay TG. Transformation of Chlamydomonas reinhardtii with silicon carbide whiskers. Biotechniques 1993; 15:452–460.PubMedGoogle Scholar
  42. 42.
    Shimogawara K, Fujiwara S, Grossman A et al. High-efficiency transformation of Chlamydomonas reinhardtii by electroporation. Genetics 1998; 148:1821–1828.PubMedGoogle Scholar
  43. 43.
    Sanford JC, Smith FD, Russell JA. Optimizing the biolistic process for different biological applications. Methods in Enzymology 1993; 217:483–509.PubMedCrossRefGoogle Scholar
  44. 44.
    Kindle KL, Schnell RA, Fernández E et al. Stable nuclear transformation of Chlamydomonas using the Chlamydomonas gene for nitrate reductase. J Cell Biol 1989; 109(6):2589–601.PubMedCrossRefGoogle Scholar
  45. 45.
    Kumar SC, Misqitta RW, Reddy VS et al. Genetic transformation of the green alga Chlamydomonas reinhardtii by Agrobacterium tumefaciens. Plant Sci 2004; 166:731–738.CrossRefGoogle Scholar
  46. 46.
    Gelvin SB. Agrobacterium-mediated plant transformation: The biology behind the gene jockey tool. Microbiol Mol Biol Rev 2003; 67:16–37.PubMedCrossRefGoogle Scholar
  47. 47.
    Langridge P, Brown JWS, Pintor-Toro JA et al. Expresión of zein genes in Acetabulara mediterranea. Eur J Cell Biol 1985; 39:257–64.Google Scholar
  48. 48.
    Mitra A, Higgins DW. The Chlorella virus adenine methyltransferase gene promoter is a strong promoter in plants. Plant Mol Biol 1994; 26:85–93.PubMedCrossRefGoogle Scholar
  49. 49.
    Henry EC, Meints RH. Recombinant viruses as transformation vectors of marine microalgae. J Appl Phycol 1994; 6:247–253.CrossRefGoogle Scholar
  50. 50.
    Etten V, Meints RH. Giant viruses infecting algae. Annu Rev Microbiol 1999; 53:447–494.PubMedCrossRefGoogle Scholar
  51. 51.
    Fuhrmann M, Hausherr A, Ferbitz L et al. Monitoring dynamic expression of nuclear genes in Chlamydomonas reinhardtii by using a sythetic luciferase reporter gene. Plant Mol Biol 2004; 55:869–881.PubMedGoogle Scholar
  52. 52.
    Nelson JA, Lefebvre PA. Targeted disruption of the NIT8 gene in Chlamydomonas reinhardtii. Mol Cell Biol 1995; 15:5762–5769.PubMedGoogle Scholar
  53. 53.
    Sodeinde OA, Kindle KL. Homologous recombination in the nuclear genome of Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 1993; 90(19):9199–9203.PubMedCrossRefGoogle Scholar
  54. 54.
    Zorin B, Hegemann P, Sizova I. Nuclear-gene targeting by using single-stranded DNA avoids illegitimate DNA integration in Chlamydomonas reinhardtii. Eukaryotic cell 2005; 4(7):1264–1272.PubMedCrossRefGoogle Scholar
  55. 55.
    González-Ballester D, de Montaigu A, Higuera JJ et al. Functional genomics of the regulation of the nitrate assimilation pathway in Chlamydomonas. Plant Physiol 2005; 137(2):522–533.PubMedCrossRefGoogle Scholar
  56. 56.
    Auchincloss AH, Loroch AI, Rochaix JD. The argininosuccinate lyase gene of Chlamydomonas reinhardtii: Cloning of the cDNA and its characterization as a selectable shuttle marker. Mol Gen Genet 1999; 261(1):21–30.PubMedCrossRefGoogle Scholar
  57. 57.
    Fuhrmann M, Oertel W, Hegemann P. A synthetic gene coding for the green fluorescent protein (GFP) is a versatile reporter in Chlamydomonas reinhardtii. Plant J 1999; 19(3):353–361.PubMedCrossRefGoogle Scholar
  58. 58.
    Apt KE, Zaslavkaia LA, Lippmeier JC et al. In vivo characterization of diatom multipartite plastid targeting signals. J Cell Sci 2002; 115:4061–4069.PubMedCrossRefGoogle Scholar
  59. 59.
    Ohresser M, Matagne RF, Loppes R. Expression of the arylsulphatase reporter gene under the control of the nit1 promoter in Chlamydomonas reinhardtii. Curr Genet 1997; 31(3):264–271.PubMedCrossRefGoogle Scholar
  60. 60.
    Llamas A, Igeno MI, Galvan A et al. Nitrate signalling on the nitrate reductase gene promoter depends directly on the activity of the nitrate transport systems in Chlamydomonas. Plant J 2002; 30(3):261–271.PubMedCrossRefGoogle Scholar
  61. 61.
    Schroda M, Blocker D, Beck CF. The HSP70A promoter as a tool for the improved expression of transgenes in Chlamydomonas. Plant J 2000; 21(2):121–131.PubMedCrossRefGoogle Scholar
  62. 62.
    Schroda M, Beck CF, Vallon O. Sequence elements within an HSP70 promoter counteract transcriptional transgene silencing in Chlamydomonas. Plant J 2002; 31(4):445–455.PubMedCrossRefGoogle Scholar
  63. 63.
    Koblenz B, Lechtreck KF. The Nit1 promoter allows inducible and reversible silencing of centrin in Chlamydomonas reinhardtii. Eukariotic Cell 2005; 4(11):1959–1962.CrossRefGoogle Scholar
  64. 64.
    Poulsen N, Kroger N. A new molecular tool for transgenic diatoms: Control of mRNA and protein biosynthesis by an inducible promoter-terminator cassette. FEBS J 2005; 272(13):3413–3423.PubMedCrossRefGoogle Scholar
  65. 65.
    Hall LM, Taylor KB, Jones DD. Expression of a foreign gene in Chlamydomonas reinhardtii. Gene 1993; 124(1):75–81.PubMedCrossRefGoogle Scholar
  66. 66.
    Tang DK, Qiao SY, Wu M. Insertion mutagenesis of Chlamydomonas reinhardtii by electroporation and heterologous DNA. Biochem Molec Biol Int 1995; 36(5):1025–1035.PubMedGoogle Scholar
  67. 67.
    Sizova LA, Lapina TV, Frolova ON et al. Stable nuclear transformation of Chlamydomonas reinhardtii with a Streptomyces rimosus gene as the selectable marker. Gene 1996; 181:13–18.PubMedCrossRefGoogle Scholar
  68. 68.
    Haring MA, Beck CF. A promoter trap for Chlamydomonas reinhardtii: Development of a gene cloning method using 5′ RACE-based probes. Plant J 1997; 11(6):1341–1348.PubMedCrossRefGoogle Scholar
  69. 69.
    Sizova I, Fuhrmann M, Hegemann P. A Streptomyces rimosus aphVIII gene coding for a new type phosphotransferase provides stable antibiotic resistance to Chlamydomonas reinhardtii. Gene 2001; 277:221–229.PubMedCrossRefGoogle Scholar
  70. 70.
    Kovar JL, Zhang J, Funke RP et al. Molecular analysis of the acetolactate synthase gene of Chlamydomonas reinhardtii and development of a genetically engineered gene as a dominant selectable marker for genetic transformation. Plant J 2002; 29:109–117.PubMedCrossRefGoogle Scholar
  71. 71.
    Fischer N, Rochaix JD. The flanking regions of PsaD drive efficient gene expression in the nucleus of the green alga Chlamydomonas reinhardtii. Mol Genet Genomics 2001; 265:888–894.PubMedCrossRefGoogle Scholar
  72. 72.
    Crutchfield ALM, Diller KR, Brand JJ. Cryopreservation of Chlamydomonas reinhardtii (Chlorophyta). Eur J Phycol 1999; 34:43–52.CrossRefGoogle Scholar
  73. 73.
    Baulcombe D. RNA silencing in plants. Nature 2004; 431:356–363.PubMedCrossRefGoogle Scholar
  74. 74.
    Cerutti H, Johnson AM, Gillham NW et al. A eubacterial gene conferring spectinomycin resistance on Chlamydomonas reinhardtii: Integration into the nuclear genome and gene expression. Genetics 1997; 145:97–110.PubMedGoogle Scholar
  75. 75.
    Cerutti H. RNA interference: Travelling in the cell and gaining function. Trends Genet 2003; 19:39–46.PubMedCrossRefGoogle Scholar
  76. 76.
    Wu-Scharf D, Jeong B, Zhang C et al. Transgene and transposon silencing in Chlamydomonas by a DEAH-box RNA helicase. Science 2000; 290:1159–1162.PubMedCrossRefGoogle Scholar
  77. 77.
    Lechtreck KF, Rostmann J, Grunow A. Analysis of Chlamydomonas SF-assemblin by GFP tagging and expression of antisense constructs. J Cell Sci 2002; 115:1511–1522.PubMedGoogle Scholar
  78. 78.
    Jeong B, Wu-Scharf W, Zhang C et al. Suppressors of transcriptional transgenic silencing in Chlamydomonas are sensitive to DNA-damaging agents and reactivate transposable elements. Proc Natl Acad Sci USA 2002; 99:1076–1081.CrossRefGoogle Scholar
  79. 79.
    Rohr J, Sarkar N, Balenger S et al. Tandem inverted repeat system for selection of effective transgenic RNAi strains in Chlamydomonas. Plant J 2004; 40:611–621.PubMedCrossRefGoogle Scholar
  80. 80.
    Fischle W, Wang Y, Allis CD. Histone and chromatin cross-talk. Curr Opin Cell Biol 2003; 15:172–183.PubMedCrossRefGoogle Scholar
  81. 81.
    Loidl P. A plant dialect of the histone language. Trends Plant Sci 2004; 9:84–90.PubMedCrossRefGoogle Scholar
  82. 82.
    Van Dijk K, Marley KE, Jeong B et al. Monomethyl histone H3 lysine 4 as an epigenetic mark for silenced euchromatin in Chlamydomonas. Plant Cell 2005; 17.Google Scholar
  83. 83.
    Lumbreras V, Stevens DR, Purton S. Efficient foreign gene expression in Chlamydomonas reinhardtii mediated by an endogenous intron. Plant J 1998; 14:441–447.CrossRefGoogle Scholar
  84. 84.
    Zaslavskaia LA, Lippmeier JC, Shih C et al. Trophic conversion of an obligate photoautotrophic organism through metabolic engineering. Science 2001; 292:2073–2075.PubMedCrossRefGoogle Scholar
  85. 85.
    Mayfield SP, Kindle KL. Stable nuclear transformation of Chlamydomonas reinhardtii by using a C. reinhardtii gene as the selectable marker. Proc Natl Acad Sci USA 1990; 87(6):2087–2091.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2007

Authors and Affiliations

  • Rosa León
    • 1
  • Emilio Fernández
    • 2
  1. 1.Deparamento de Química y Ciencia de Materiales, Facultad de Ciencias ExperimentalesUniversidad de HuelvaHuelvaSpain
  2. 2.Departamanto de Bioquímica y Biología Molecular Campus de RabanalesUniversidad de CórdobaCórdobaSpain

Personalised recommendations