Advertisement

Inventory and Monitoring Studies

Part of the Springer Series on Environmental Management book series (SSEM)

Inventory and monitoring are probably the most frequently conducted wildlife studies. Not only are they conducted in the pursuit of new knowledge (e.g., to describe the fauna or habitats [see Sect. 1.5 for definition of habitat and related terms] of a given area, or understand trends or changes of selected parameters), but also they are cornerstones in the management of wildlife resources. In general terms, inventories are conducted to determine the distribution and composition of wildlife and wildlife habitats in areas where such information is lacking, and monitoring is typically used to understand rates of change or the effects of management practices on wildlife populations and habitats. In application to wildlife, inventory and monitoring are typically applied to species’ habitats and populations. Because sampling population parameters can be costly, habitat is often monitored as a surrogate for monitoring populations directly. This is possible, however, only if a clear and direct linkage has been established between the two. By this, we mean that a close correspondence has been identified between key population parameters and one or more variables that comprise a species’ habitat. Unfortunately, such clear linkages are lacking for most species.

The need for monitoring and inventory go well beyond simply a scientific pursuit. For example, requirements for monitoring are mandated by key legislation (e.g., National Forest Management Act [1976], National Environmental Policy Act [1969], Endangered Species Act [1973]), thus institutionalizing the need for conducting such studies. Even so, monitoring is embroiled in controversy. The controversy is not so much over the importance or need to conduct monitoring, but surrounds the inadequacy of many programs to implement scientifically credible monitoring programs (Morrison and Marcot 1995; White et al. 1999; Moir and Block 2001). Unfortunately, few inventory/monitoring studies are conducted at an appropriate level of rigor to precisely estimate the selected parameters. Given that inventory and monitoring are key steps in the management process and especially adaptive management (Walters 1986; Moir and Block, 2001), it is crucial to follow a credible, repeatable, and scientific process to provide reliable knowledge (cf. Romesburg 1981). The purpose of this chapter is to outline basic steps that should be followed for inventory and monitoring studies.

Keywords

Adaptive Management Population Trend Monitoring Study Recovery Plan Prescribe Fire 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, T. F. H., and T. W. Hoekstra. 1992. Towards a Unified Ecology. Columbia University Press, New York, NY.Google Scholar
  2. Anderson, D. R. 2001. The need to get the basics right in wildlife field studies. Wildl. Soc. Bull. 29: 1294–1297.Google Scholar
  3. Anderson, D. R. 2003. Response to Engeman: Index values rarely constitute reliable information. Wildl. Soc. Bull. 31: 288–291.Google Scholar
  4. Aubry, K., S. Wisley, C. Raley, and S. Buskirk. 2004. Zoogeography, pacing patterns and dispersal in fishers: insights gained from combining field and genetic data, in D. J. Harrison, A. K. Fuller, and G. Proulx, Eds. Martins and Fishers (Martes) in Human-Altered Environments: An International Perspective, pp. 201–220. Springer Academic, New York, NY.Google Scholar
  5. Bart, J., S. Droge, P. Geissler, B. Peterjohn, and C. J. Ralph. 2004. Density estimation in wildlife surveys. Wildl. Soc. Bull. 32: 1242–1247.CrossRefGoogle Scholar
  6. Block, W. M., and L. A. Brennan. 1993. The habitat concept in ornithology: Theory and applications, in D. M. Power, Ed. Current Ornithology, vol. 11, pp. 35–91. Plenum, New York, NY.Google Scholar
  7. Block, W. M., M. L. Morrison, J. Verner, and P. N. Manley. 1994. Assessing wildlife–habitat-relationships models: A case study with California oak woodlands. Wildl. Soc. Bull. 22: 549–561.Google Scholar
  8. Boyce, M. S. 1992. Population viability analysis. Annu. Rev. Ecol. Syst. 23: 481–506.CrossRefGoogle Scholar
  9. Burnham, K. P., and D. R. Anderson. 2002. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach, 2nd Edition. Springer-Verlag, New York, NY.Google Scholar
  10. Caswell, H. 2001. Matrix Population Models: Construction, Analysis, and Interpretation, 2nd Edition. Sinauer Associates, Inc., Sunderland, MA.Google Scholar
  11. Clements, E. E. 1920. Plant Indicators. Carnegie Institute, Washington, DC.Google Scholar
  12. Cochran, W. G. 1977. Sampling Techniques, 3rd Edition. Wiley, New York, NY.Google Scholar
  13. Cohen, J. 1988. Statistical Power Analysis for the Behavioral Sciences, 2nd Edition. Erlbaum, Hillsdale, NJ.Google Scholar
  14. Cohen, J. 1992. A power primer. Psychol. Bull. 112: 155–159.PubMedCrossRefGoogle Scholar
  15. Davis, M. B. 1989. Retrospective studies, in G. E. Likens, Ed. Long-Term Studies in Ecology: Approaches and Alternatives, pp. 71–89. Springer-Verlag, New York, NY.Google Scholar
  16. DeAngelis, D. L., and L. J. Gross. 1992. Individual-Based Models and Approaches in Ecology. Chapman and Hall, London.Google Scholar
  17. Dunham, A. E., and S. J. Beaupre. 1998. Ecological experiments: Scale, phenomenology, mechanism, and the illusion of generality, in J. Bernardo and W. J. Resetarits Jr., Eds. Experimental Ecology: Issues and Perspectives, pp. 27–49. Oxford University Press, Oxford.Google Scholar
  18. Eberhardt, L. L., and M. A. Simmons. 1987. Calibrating population indices by double sampling. J. Wildl. Manage. 51: 665–675.CrossRefGoogle Scholar
  19. Efron, B. 1982. The Jackknife, The Bootstrap, and Other Resampling Plans. Society for Industrial and Applied Mathematics, Philadelphia, PA, 92 pp.Google Scholar
  20. Engeman, R. M. 2003. More on the need to get the basics right: Population indices. Wildl. Soc. Bull. 31: 286–287.Google Scholar
  21. Fleiss, J. L. 1981. Statistical Methods for Rates and Proportions, 2nd Edition. Wiley, New York, NY.Google Scholar
  22. Franklin, J. F. 1989. Importance and justification of long-term studies in ecology, in G. E. Likens, Ed. Long-Term Studies in Ecology: Approaches and Alternatives, pp. 3–19. Springer-Verlag, New York, NY.Google Scholar
  23. Ganey, J. L., G. C. White, D. C. Bowden, and A. B. Franklin. 2004. Evaluating methods for monitoring populations of Mexican spotted owls: A case study, in W. L. Thompson, Ed. Sampling Rare and Elusive Species: Concepts, Designs, and Techniques for Estimating Population Parameters, pp. 337–385. Island Press, Washington, DC.Google Scholar
  24. Gray, P. A., D. Cameron, and I. Kirkham. 1996. Wildlife habitat evaluation in forested ecosystems: Some examples from Canada and the United States, in R. M. DeGraaf and R. I. Miller, Eds. Conservation of Faunal Diversity in Forested Landscapes, pp. 407–536. Chapman and Hall, London.Google Scholar
  25. Green, R. H. 1979. Sampling Design and Statistical Methods for Environmental Biologists. Wiley, New York, NY.Google Scholar
  26. Haig, S. M., T. D. Mullins, E. D. Forsman, P. W. Trail, and L. Wennerberg. 2004. Genetic identification of spotted owls, barred owls, and their hybrids: Legal implications of hybrid identity. Conserv. Biol. 18: 1347–1357.CrossRefGoogle Scholar
  27. Hayek, L. C. 1994. Analysis of amphibian biodiversity data, in W. R. Heyer, M. A. Donnelly, R. W. McDiarmid, L. C. Hayek, and M. S. Foster, Eds. Measuring and Monitoring Biological Diversity: Standard Methods for Amphibians, pp. 207–269. Smithsonian Institution Press, Washington, DC.Google Scholar
  28. Hayes, J. P., and R. J. Steidel. 1997. Statistical power analysis and amphibian population trends. Conserv. Biol. 11: 273–275.CrossRefGoogle Scholar
  29. Hedges, L. V., and Olkin, I. (1985). Statistical Methods for Meta-Analysis. Academic, San Diego, CA.Google Scholar
  30. Heyer, W. R., M. A. Donnelly, R. W. McDiarmid, L. C. Hayek, and M. S. Foster. 1994. Measuring and Monitoring Biological Diversity: Standard Methods for Amphibians. Smithsonian Institution Press, Washington, DC.Google Scholar
  31. Hohn, M. E. 1976. Binary coefficients: A theoretical and empirical study. J. Int. Assoc. Math. Geol. 8: 137–150.CrossRefGoogle Scholar
  32. Holling, C. S. 1966. The functional response of invertebrate predators to prey density. Mem. Entomol. Soc. Can. 48: 1–86.Google Scholar
  33. Hunter Jr., M. L. 1991. Coping with ignorance: The coarse filter strategy for maintaining biodiversity, in K. A. Kohm, Ed. Balancing on the Brink of Extinction: The Endangered Species Act and Lessons for the Future, pp. 266–281. Island Press, Washington, DC.Google Scholar
  34. Hurlbert, S. H. 1984. Pseudoreplication and the design of ecological field experiments. Ecol. Monogr. 54: 187–211.CrossRefGoogle Scholar
  35. Jaccard, P. 1901. The distribution of the flora in the alpine zone. New Phytol. 11: 37–50.CrossRefGoogle Scholar
  36. Lande, R., S. Engen, and B. -E. Sæther. 2003. Stochastic Population Dynamics in Ecology and Conservation. Oxford University Press, Oxford.Google Scholar
  37. Landres, P. B., J. Verner, and J. W. Thomas, 1988. Ecological uses of vertebrate indicator species: A critique. Conserv. Biol. 2: 316–328.CrossRefGoogle Scholar
  38. MacKenzie, D. I., J. A. Royle, J. A. Brown, and J. D. Nichols. 2004. Occupancy estimation and modeling for rare and elusive populations, in W.L. Thompson, Ed. Sampling Rare or Elusive Species. pp. 142–172. Island Press, Covelo, CA.Google Scholar
  39. Marascuilo, L. A., and M. McSweeny. 1977. Non-Parametric and Distribution-Free Methods for the Social Sciences. Brooks/Cole, Monterey, CA.Google Scholar
  40. May, R. M. 1974. Stability and Complexity in Model Ecosystems, 2nd Edition. Princeton University Press, Princeton.Google Scholar
  41. McCallum, H. 2000. Population Parameters: Estimation for Ecological Models. Blackwell, Malden, MA.Google Scholar
  42. McCullough, D. R., and R. H. Barrett. 1992. Wildlife 2001: Populations. Elsevier, London.Google Scholar
  43. McKelvey, K. S., and D. E. Pearson. 2001. Population estimation with sparse data: The role of estimators versus indices revisited. Can. J. Zool. 79: 1754–1765.CrossRefGoogle Scholar
  44. McKelvey, K. S., J. von Kienast, K. B. Aubry, G. M. Koehler, B. T. Maletzke, J. R. Squires, E. L. Lindquist, S. Loch, M. K. Schwartz. 2006. DNA Analysis of hair and scat collected along snow tracks to document the presence of Canada lynx. Wildl. Soc. Bull. 34(2): 451–455.CrossRefGoogle Scholar
  45. Miller, R. I. 1996. Modern approaches to monitoring changes in forests using maps, in R. M. DeGraaf and R. I. Miller, Eds. Conservation of Faunal Diversity in Forested Landscapes, pp. 595–614. Chapman and Hall, London.Google Scholar
  46. Moir, W. H., and W. M. Block. 2001. Adaptive management on public lands in the United States: Commitment or rhetoric? Environ. Manage. 28: 141–148.PubMedCrossRefGoogle Scholar
  47. Morrison, M. L. 1986. Birds as indicators of environmental change. Curr. Ornithol. 3: 429–451.Google Scholar
  48. Morrison, M. L. 1992. The design and importance of long-term ecological studies: Analysis of vertebrates in the Inyo-White Mountains, California, in R. C. Szaro, K. E. Severson, and D. R. Patton, Tech. Coords. Management of Amphibians, Reptiles, and Small Mammals in North America, pp. 267–275. USDA Forest Service, Gen. Tech. Rpt. RM-166. Rocky Mountain Forest and Range Experiment Station, Fort Collins, CO.Google Scholar
  49. Morrison, M. L., and B. G. Marcot. 1995. An evaluation of resource inventory and monitoring programs used in national forest planning. Environ. Manage. 19: 147–156.CrossRefGoogle Scholar
  50. Morrison, M. L., B. G. Marcot, and R. W. Mannan. 1998. Wildlife–Habitat Relationships: Concepts and Application, 2nd Edition. University of Wisconsin Press, Madison, WI.Google Scholar
  51. Noon, B. R., T. A. Spies, and M. G. Raphael. 1999. Conceptual basis for designing an effectiveness monitoring program, in B. S. Mulder, B. R. Noon, T. A. Spies, M. G. Raphael, C. J. Palmer, A. R. Olsen, G. H. Reeves, and H. H. Welsh, Tech. Coords. The Strategy and Design of the Effectiveness Monitoring Program in the Northwest Forest Plan, pp. 21–48. USDA Forest Service, Gen. Tech. Rpt. PNW-GTR-437. Pacific Northwest Research Station, Portland, OR.Google Scholar
  52. Pickett, S. T. A. 1989. Space-For-Time Substitutions as an Alternative to Long-Term Studies, in G. E. Likens, Ed. Long-Term Studies in Ecology: Approaches and Alternatives, pp. 110–135. Springer-Verlag, New York, NY.Google Scholar
  53. Pielou, E. C. 1977. Mathematical Ecology, 2nd Edition. Wiley, New York, NY.Google Scholar
  54. Reynolds, R. T., and S. M. Joy. 2006. Demography of Northern Goshawks in Northern ARIZONA, 1991–1996. Stud. Avian Biol. 31: 63–74.Google Scholar
  55. Rinkevich, S. E., J. L. Ganey, W. H. Moir, F. P. Howe, F. Clemente, and J. F. Martinez-Montoya. 1995. Recovery units, in Recovey Plan for the Mexican Spotted Owl (Strix occidentalis lucida), vol. I, pp. 36–51. USDI Fish and Wildlife Service, Southwestern Region, Albuquerque, NM.Google Scholar
  56. Romesburg, H. C. 1981. Wildlife science: Gaining reliable knowledge. J. Wild. Manage. 45: 293–313.CrossRefGoogle Scholar
  57. Rosenstock, S. S., D. R. Anderson, K. M. Giesen, T. Leukering, and M. E. Carter. 2002. Landbird counting techniques: Current practices and alternatives. Auk 119: 46–53.CrossRefGoogle Scholar
  58. Sauer, J. R., J. E. Hines, and J. Fallon. 2005. The North American Breeding Bird Survey, Results and Analysis 1966–2005. Version 6.2.2006. USGS Patuxent Wildlife Research Center, Laurel, MD.Google Scholar
  59. Schwartz, M. K. 2007. Ancient DNA confirms native rocky mountain fisher Martes pennanti avoided early 20th century extinction. J. Mam. 87: 921–92.CrossRefGoogle Scholar
  60. Schwartz, M. K., K. L. Pilgrim, K. S. McKelvey, E. L. Lindquist, J. J. Claar, S. Loch, and L. F. Ruggiero. 2004. Hybridization between Canada lynx and bobcats: Genetic results and management implications. Conserv. Genet. 5: 349–355.CrossRefGoogle Scholar
  61. Schwartz, M. K., G. Luikart, and R. S. Waples. 2007. Genetic monitoring as a promising tool for conservation and management. Trends Ecol. Evol. 22: 25–33.PubMedCrossRefGoogle Scholar
  62. Scott, J. M., F. Davis, B. Csuti, R. Noss, B. Butterfield, C. Grives, H. Anderson, S. Caicco, F. D’Erchia, T. Edwards Jr., J. Ulliman, and R. G. Wright. 1993. Gap analysis: A geographical approach to protection of biodiversity. Wildl. Monogr. 123.Google Scholar
  63. Sharp, A., M. Norton, A. Marks, and K. Holmes. 2001. An evaluation of two indices of red fox (Vulpes vulpes) abundance in an arid environment. Wildl. Res. 28: 419–424.CrossRefGoogle Scholar
  64. Shugart, H. H. 1989. The role of ecological models in long-term ecological studies, in G. E. Likens, Ed. Long-Term Studies in Ecology: Approaches and Alternatives, pp. 90–109. Springer-Verlag, New York, NY.Google Scholar
  65. Sokal R. R., and C. D. Michener. 1958. A statistical method for evaluating systematic relationships. Univ. Kansas Sci. Bull. 38: 1409–1438.Google Scholar
  66. Sokal, R. R., and F. J. Rohlf. 1969. Biometry: The Principles and Practice of Statistics in Biological Research. Freeman, San Francisco, CA.Google Scholar
  67. Sorensen, T. 1948. A method for establishing groups of equal amplitude in plant sociology based on similarity of species content, and its applications to analyses of the vegetation on Danish commons. Det Kongelige Danske Viden-skkabernes Selskab, Biloogiske Skrifter 5: 1–34.Google Scholar
  68. Spellerberg, I. F. 1991. Monitoring Ecological Change. Cambridge University Press, New York, NY.Google Scholar
  69. Steidl, R. J., J. P. Hayes, and E. Schauber. 1997. Statistical power analaysis in wildlife research. J. Wildl. Manage. 61: 270–279.CrossRefGoogle Scholar
  70. Strayer, D., J. S. Glitzenstein, C. G. Jones, J. Kolasa, G. Likens, M. J. McDonnell, G. G. Parker, and S. T. A. Pickett. 1986. Long-Term Ecological Studies: An Illustrated Account of Their Design, Operation, and Importance to Ecology. Occas Pap 2. Institute for Ecosystem Studies, Millbrook, New York, NY.Google Scholar
  71. Swetnam, T. W. 1990. Fire history and climate in the southwestern United States, in J. S. Krammes, Tech. Coord. Effects of Fire Management of Southwestern Natural Resources, pp. 6–17. USDA Forest Service, Gen. Tech. Rpt. RM-191. Rocky Mountain Forest and Range Experiment Station, Fort Collins, CO.Google Scholar
  72. Swetnam, T. W., and J. L. Bettancourt. 1998. Mesoscale disturbance and ecological response to decadal climatic variability in the American Southwest. J. Climate 11: 3128–3147.CrossRefGoogle Scholar
  73. Thomas, L. 1997. Retorspective power analysis. Conserv. Biol. 11: 276–280.CrossRefGoogle Scholar
  74. Thompson, S. K. 2002. Sampling, 2nd Edition. Wiley, New York, NY.Google Scholar
  75. Thompson, W. L., G. C. White, and C. Gowan, 1998. Monitoring Vertebrate Populations. Academic, San Diego, CA.Google Scholar
  76. USDA Forest Service. 1996. Record of Decision for Amendment of Forest Plans: Arizona and New Mexico. USDA Forest Service, Southwestern Region, Albuquerque, NM.Google Scholar
  77. USDI Fish and Wildlife Service. 1995. Recovery Plan for the Mexican Spotted Owl (Strix occidentalis lucida), vol. I. USDI Fish and Wildlife Service, Albuquerque, NM.Google Scholar
  78. Verner, J. 1983. An integrated system for monitoring wildlife on the Sierra Nevada Forest. Trans. North Am. Wildl. Nat. Resour. Conf. 48: 355–366.Google Scholar
  79. Verner, J., and L. V. Ritter. 1985. A comparison of transects and point counts in oak-pine woodlands of California. Condor 87: 47–68.CrossRefGoogle Scholar
  80. Verner, J., M. L. Morrison, and C. J. Ralph. 1986. Wildlife 2000: Modeling Habitat Relationships of Terrestrial Vertebrates. University of Wisconsin Press, Madison, WI.Google Scholar
  81. Verner, J., R. J. Gutiérrez, and G. I. Gould Jr. 1992. The California spotted owl: General biology and ecological relations, in J. Verner, K. S. McKelvey, B. R. Noon, R. J. Gutiérrez, G. I. Gould Jr., and T. W. Beck, Tech. Coords. The California Spotted Owl: A Technical Assessment of Its Current Status, pp. 55–77. USDA Forest Service, Gen. Tech. Rpt. PSW-GTR-133. Pacific Southwest Research Station, Berkeley, CA.Google Scholar
  82. Walters, C. J. 1986. Adaptive Management of Renewable Resources. Macmillan, New York, NY.Google Scholar
  83. White, G. C. 2005. Correcting wildlife counts using detection probabilities. Wildl. Res. 32: 211–216.CrossRefGoogle Scholar
  84. White, G. C., and J. D. Nichols, 1992. Introduction to the methods section, in D. R. McCullough and R. H. Barrett, Eds. Wildlife 2001: Populations, pp. 13–16. Elsevier, London.Google Scholar
  85. White, G. C., W. M. Block, J. L. Ganey, W. H. Moir, J. P. Ward Jr., A. B. Franklin, S. L. Spangle, S. E. Rinkevich, R. Vahle, F. P. Howe, and J. L. Dick Jr. 1999. Science versus reality in delisting criteria for a threatened species: The Mexican spotted owl experience. Trans. North Am. Wildl. Nat. Resour. Conf. 64: 292–306.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Personalised recommendations