Concepts for Wildlife Science: Design Application

Part of the Springer Series on Environmental Management book series (SSEM)

In this chapter, we turn our attention to the concept of basic study design. We begin by discussing variable classification, focusing on the types of variables: explanatory, disturbing, controlling, and randomized. We then discuss how each of these variable types is integral to wildlife study design. We then detail the necessity of randomization and replication in wildlife study design, and relate these topics to variable selection.

We outline the three major types of designs in decreasing order of rigor (i.e., manipulative experiments, quasi-experiments, and observational studies) with respect to controls, replication, and randomization, which we further elaborate in Chap. 3. We provide a general summary on adaptive management and we briefly touch on survey sampling designs for ecological studies, with a discussion on accounting for detectability, but leave detailed discussion of sampling design until Chap. 4.

We discuss the place of statistical inference in wildlife study design, focusing on parameter estimation, hypothesis testing, and model selection. We do not delve into specific aspects and applications of statistical models (e.g., generalized linear models or correlation analysis) as these are inferential, rather than design techniques. We discuss the relationships between statistical inference and sampling distributions, covering the topics of statistical accuracy, precision, and bias. We provide an outline for evaluating Type I and II errors as well as sample size determination. We end this chapter with a discussion on integrating project goals with study design and those factors influencing the design type used, and conclude with data storage techniques and methods, programs for statistical data analysis, and approaches for presenting results from research studies.


Statistical Inference Detection Probability Adaptive Management Design Application National Wildlife Refuge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amstrup, S. C., T. L. McDonald, and B. F. J. Manly. 2005. Handbook of Capture–Recapture Analysis. Princeton University, New Jersey.Google Scholar
  2. Anderson, D. R. 2001. The need to get the basics right in wildlife field studies. Wildl. Soc. Bull. 29: 1294–1297.Google Scholar
  3. Anderson, D. R. 2003. Response to Engeman: index values rarely constitute reliable information. Wildl. Soc. Bull. 31: 288–291.Google Scholar
  4. Anderson, D. R., K. P. Burnham, and W. L. Thompson. 2000. Null hypothesis testing: problems, prevalence, and an alternative. J. Wildl. Manage. 64: 912–923.CrossRefGoogle Scholar
  5. Anderson, D. R., W. A. Link, D. H. Johnson, and K. P. Burnham. 2001. Suggestions for presenting the results of data analyses. J. Wildl. Manage. 65: 373–378.CrossRefGoogle Scholar
  6. Anscombe, F. J. 1973. Graphs in statistical analysis. Am. Stat. 27: 17–21.CrossRefGoogle Scholar
  7. Arnason, A. N., and C. J. Schwarz. 1999. Using POPAN-5 to analyse banding data. Bird Study 46(Suppl.): 157–168.CrossRefGoogle Scholar
  8. Bart, J., and S. Earnst. 2002. Double sampling to estimate density and population trends in birds. Auk 119: 36–45.CrossRefGoogle Scholar
  9. Borchers, D. L., S. T. Buckland, and W. Zucchini. 2002. Estimating animal abundance-closed populations. Springer-Verlag, London.Google Scholar
  10. Brownie, C., D. R. Anderson, K. P. Burnham, and D. R. Robson. 1985. Statistical inference from band recovery data–a handbook, 2nd Edition. U.S. Fish and Wildlife Service Resource Publication 156.Google Scholar
  11. Buckland, S. T., I. B. J. Goudie, and D. L. Borchers. 2000. Wildlife population assessment: past developments and future directions. Biometrics 56: 1–12.PubMedCrossRefGoogle Scholar
  12. Buckland, S. T., D. R. Anderson, K. P. Burnham, J. L. Laake, D. L. Borchers, and L. Thomas. 2001. Introduction to Distance Sampling. Oxford University, Oxford.Google Scholar
  13. Burnham, K. P. and D. R. Anderson. 2002. Model selection and multimodel inference: a practical information-theoretic approach, 2nd Edition. Springer-Verlag, New York.Google Scholar
  14. Burnham, K. P., D. R. Anderson, G. C. White, C. Brownie, and K. P. Pollock. 1987. Design and analysis of methods for fish survival experiments based on release–recapture. Am. Fish. Soc. Monogr. 5: 1–437.Google Scholar
  15. Burnham, K. P., G. C. White, and D. R. Anderson. 1995. Model selection strategy in the analysis of capture–recapture data. Biometrics 51: 888–898.CrossRefGoogle Scholar
  16. Chambers, J. M., W. S. Cleveland, B. Kleinez, and P. A. Turkey. 1983. Graphical methods for data analysis. Wadsworth International Group, Belmont, CA, USA.Google Scholar
  17. Chambers, J. M. 1998. Programming with data. A guide to the S language. Springer-Verlag, New York.Google Scholar
  18. Cherry S. 1998. Statistical tests in publications of The Wildlife Society. Wildl. Soc. Bull. 26: 947–953.Google Scholar
  19. Cleveland, W. S. 1993. Visualizing Data. Hobart, Summit, NJ.Google Scholar
  20. Cleveland, W. S. 1994. The Elements of Graphing Data. Hobart, Summit, NJ.Google Scholar
  21. Cochran W. G. 1977. Sampling Techniques, 3rd Edition. John Wiley and Sons, New York.Google Scholar
  22. Codd, E. F. 1970. A relational model of data for large shared data banks. Commun. ACM 13: 377–387.CrossRefGoogle Scholar
  23. Cohen, J. 1988. Statistical power analysis for the behavioral sciences, 2nd Edition. Lawrence Erlbaum Associates, Inc., Mahwah, NJ.Google Scholar
  24. Collier, B. A., S. S. Ditchkoff, J. B. Raglin, and J. M. Smith. 2007. Detection probability and sources of variation in white-tailed deer spotlight surveys. J. Wildl. Manage. 71: 277–281.CrossRefGoogle Scholar
  25. Cook, R. D., and J. O. Jacobsen. 1979. A design for estimating visibility bias in aerial surveys. Biometrics 35: 735–742.CrossRefGoogle Scholar
  26. Date, C. J. 2003. An Introduction to Database Systems, 8th Edition. Addison Wesley, Boston, MA.Google Scholar
  27. Dinsmore, S. J., G. C. White, and F. L. Knopf. 2002. Advanced techniques for modeling avian nest survival. Ecology 83: 3476–3488.CrossRefGoogle Scholar
  28. Eberhardt, L. L. 2003. What should we do about hypothesis testing? J. Wildl. Manage. 67: 241–247.CrossRefGoogle Scholar
  29. Ellison, A. M. 2004. Bayesian inference in ecology. Ecol. Lett. 7: 509–520.CrossRefGoogle Scholar
  30. Farfarman, K. R., and C. A. DeYoung. 1986. Evaluation of spotlight counts of deer in south Texas. Wildl. Soc. Bull. 14: 180–185.Google Scholar
  31. Fisher, R. A. 1925. Statistical Methods for Research Workers. Oliver and Boyd, London.Google Scholar
  32. Fisher, R. A. 1929. The statistical method in psychical research. Proc. Soc. Psychical Res. 39: 189–192.Google Scholar
  33. Fisher, R. A. 1935. The Design of Experiments. Reprinted 1971 by Hafner, New York.Google Scholar
  34. Franklin, A. B., T. M. Shenk, D. R. Anderson, and K. P. Burnham. 2001. in T. M. Shenk and A. B. Franklin, Eds. Statistical model selection: the alternative to null hypothesis testing, pp. 75–90. Island, Washington, DC.Google Scholar
  35. Gavin, T. A. 1991. Why ask “Why”: the importance of evolutionary biology in wildlife science. J. Wildl. Manage. 55: 760–766.CrossRefGoogle Scholar
  36. Gerard, P. D., D. R. Smith, and G. Weerakkody. 1998. Limits of retrospective power analysis. J. Wildl. Manage. 62: 801–807.CrossRefGoogle Scholar
  37. Green, R. H. 1979. Sampling Design and Statistical Methods for Environmental Biologists. Wiley, New York.Google Scholar
  38. Gregory, R., D. Ohlson, and J. Arvai. 2006a. Deconstructing adaptive management: criteria for applications in environmental management. Ecol. Appl. 16: 2411–2425.PubMedCrossRefGoogle Scholar
  39. Gregory, R., L. Failing, and P. Higgins. 2006b. Adaptive management and environmental decision making: a case study application to water use planning. Ecol. Econ. 58: 434–447.CrossRefGoogle Scholar
  40. Guthery, F. S., J. J. Lusk, and M. J. Peterson. 2001. The fall of the null hypothesis: liabilities and opportunities. J. Wildl. Manage. 65: 379–384.CrossRefGoogle Scholar
  41. Guthery, F. S., L. A. Brennan, M. J. Peterson, and J. J. Lusk. 2005. Information theory in wildlife science: critique and viewpoint. J. Wildl. Manage. 69: 457–465.CrossRefGoogle Scholar
  42. Hayes, J. P., and R. J. Steidl. 1997. Statistical power analysis and amphibian population trends. Conserv. Biol. 11: 273–275.CrossRefGoogle Scholar
  43. Holling, C. S. (ed.) 1978. Adaptive Environmental Assessment and Management. Wiley, London.Google Scholar
  44. Hurlbert, S. H. 1984. Pseudoreplication and the design of ecological field experiments. Ecol. Monogr. 54: 187–211.CrossRefGoogle Scholar
  45. Johnson, D. H. 1995. Statistical sirens: the allure of nonparametrics. Ecology 76: 1998–2000.CrossRefGoogle Scholar
  46. Johnson, D. H. 1999. The insignificance of statistical significance testing. J. Wildl. Manage. 63: 763–772.CrossRefGoogle Scholar
  47. Johnson, D. H. 2002a. The role of hypothesis testing in wildlife science. J. Wildl. Manage. 66: 272–276.CrossRefGoogle Scholar
  48. Johnson, D. H. 2002b. The importance of replication in wildlife research. J. Wildl. Manage. 66: 919–932.CrossRefGoogle Scholar
  49. Johnson, F. A., B. K. Williams, J. D. Nichols, J. E. Hines, W. L. Kendall, G. W. Smith, and D. F. Caithamer. 1993. Developing an adaptive management strategy for harvesting waterfowl in North America. In Transactions of the North American Wildlife and Natural Resources Conference, pp. 565–583. Wildlife Management Institute, Washington, DC.Google Scholar
  50. Kendall, W. L. 1999. Robustness of closed capture–recapture methods to violations of the closure assumption. Ecology 80: 2517–2525.Google Scholar
  51. Kendall, W. L., B. G. Peterjohn, and J. R. Sauer. 1996. First-time observer effects in the North American Breeding Bird Survey. Auk 113: 823–829.Google Scholar
  52. Kish, L. 1987. Statistical Design for Research. Wiley, New York.CrossRefGoogle Scholar
  53. Kuehl, R. O. 2000. Design of Experiments: Statistical Principles of Research Design and Analysis, 2nd Edition. Brooks/Cole, Pacific Grove, California.Google Scholar
  54. Laake, J. L. 2007. RMark, version 1.6.1. R package.
  55. Lebreton, J.-D., K. P. Burnham, J. Clobert, and D. R. Anderson. 1992. Modeling survival and testing biological hypotheses using marked animals: a unified approach with case studies. Ecol. Monogr. 62: 67–118.CrossRefGoogle Scholar
  56. Lehnen, S. E., and D. G. Krementz. 2005. Turnover rates of fall-migrating pectoral sandpipers in the lower Mississippi Alluvial Valley. J. Wildl. Manage. 69: 671–680.CrossRefGoogle Scholar
  57. Link, W. A., and J. R. Sauer. 1998. Estimating population change from count data. Application to the North American Breeding Bird Survey. Ecol. Appl. 8: 258–268.CrossRefGoogle Scholar
  58. Link, W. A., E. Cam, J. D. Nichols, and E. G. Cooch. 2002. Of BUGS and birds: Markov Chain Monte Carlo for hierarchical modeling in wildlife research. J. Wildl. Manage. 66: 227–291.Google Scholar
  59. Lukacs, P. M., W. L. Thompson, W. L. Kendall, W. R. Gould, P. F. Doherty Jr., K. P. Burnham, and D. R. Anderson. 2007. Concerns regarding a call for pluralism of information theory and hypothesis testing. J. Appl. Ecol. 44: 456–460.CrossRefGoogle Scholar
  60. MacKenzie, D. I., J. D. Nichols, J. A. Royle, K. H. Pollock, L. L. Bailey, and J. E. Hines. 2006. Occupancy Estimation and Modeling. Academic, Burlington, MA.Google Scholar
  61. Maindonald, J H., and J. Braun. 2003. Data Analysis and Graphics Using R. Cambridge University, United Kingdom.Google Scholar
  62. MATLAB. 2005. Learning MATLAB. The MathWorks, Inc., Natick, MA.Google Scholar
  63. Manly, B. F. J. 1991. Randomization and Monte Carlo Methods in Biology. Chapman and Hall, New York.Google Scholar
  64. McCullough, B. D., and B. Wilson. 1999. On the accuracy of statistical procedures in Microsoft Excel 97. Comput. Stat. Data Anal. 31: 27–37.CrossRefGoogle Scholar
  65. McCullough, B. D., and B. Wilson. 2002. On the accuracy of statistical procedures in Microsoft Excel 2000 and Excel XP. Comput. Stat. Data Anal. 40: 713–721.CrossRefGoogle Scholar
  66. McCullough, B. D., and B. Wilson. 2005. On the accuracy of statistical procedures in Microsoft Excel 2003 Comput. Stat. Data Anal. 49: 1224–1252.Google Scholar
  67. Minitab. 2003. MINITAB Statistical Software, Release 14 for Windows. State College, Pennsylvania.Google Scholar
  68. Mitchell, W. A. 1986. Deer spotlight census: Section 6.4.3, U.S. Army Corp of Engineers Wildlife Resources Management Manual. Technical Report EL-86–53, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.Google Scholar
  69. Mood, A. M., F. A. Graybill, and D. C. Boes. 1974. Introduction to the Theory of Statistics, 3rd Edition, McGraw-Hill, Boston, MA.Google Scholar
  70. Nichols, J. D., J. E. Hines, and K. H. Pollock. 1984. The use of a robust capture–recapture design in small mammal population studies: a field example with Microtus pennsylvanicus. Acta Therilogica 29: 357–365.Google Scholar
  71. Nichols, J. D., J. E. Hines, J. R. Sauer, F. W. Fallon, J. E. Fallon, and P. J. Heglund. 2000. A double observer approach for estimating detection probability and abundance from point counts. Auk 117(2): 393–408.CrossRefGoogle Scholar
  72. Norman, G. W., M. M. Conner, J. C. Pack, and G. C. White. 2004. Effects of fall hunting on survival of male wild turkeys in Virginia and West Virginia. J. Wildl. Manage. 68: 393–404.CrossRefGoogle Scholar
  73. Otis, D. L., K. P. Burnham, G. C. White, and D. R. Anderson. 1978. Statistical inference from capture data on closed animal populations. Wildl. Monogr. 62: 1–135.Google Scholar
  74. Payne, R. W., Murray, D. A., Harding, S. A., Baird, D. B. & Soutar, D. M. 2006. GenStat for Windows, 9th Edition. Introduction. VSN International, Hemel Hempstead.Google Scholar
  75. Peterjohn, B. G., J. R. Sauer, and W. A. Link. 1996. The 1994 and 1995 summary of the North American Breeding Bird Survey. Bird Popul. 3: 48–66.Google Scholar
  76. Pollock, K. H., J. D. Nichols, C. Brownie, and J. E. Hines. 1990. Statistical inference for capture–recapture experiments. Wildl. Monogr. 107: 1–97.Google Scholar
  77. R Development Core Team. 2006. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3–900051–07–0, URL
  78. Ripley, B. D. 1996. Pattern Recognition and Neural Networks. Cambridge University, Cambridge.Google Scholar
  79. Ripley, B. D. 2002. Statistical methods need software: a view of statistical computing. Opening Lecture, RSS Statistical Computing Section.Google Scholar
  80. Robbins, C. S., D. Bystrack, and P. H. Geissler. 1986. The breeding bird survey: the first 15 years, 1965–1979. Resource Publication no. 157, U.S. Department of the Interior, Fish and Wildlife Service, Washington, DC.Google Scholar
  81. Rosenstock, S. S., D. R. Anderson, K. M. Giesen, T. Leukering, and M. F. Carter. 2002. Landbird counting techniques: current practices and an alternative. Auk 119(1): 46–53.CrossRefGoogle Scholar
  82. Royle, J. A., and J. D. Nichols. 2003. Estimating abundance from repeated presence-absence data or point counts. Ecology 84: 777–790.CrossRefGoogle Scholar
  83. SAS Institute Inc. 2000. SAS language reference: dictionary, version 8. SAS Institute, Inc., North Carolina.Google Scholar
  84. Sauer, J. R., B. G. Peterjohn, and W. A. Link. 1994. Observer differences in the North American Breeding Bird Survey. Auk 111: 50–62.Google Scholar
  85. Schwarz, C. J. and G. A. F. Seber. 1999. Estimating animal abundance: review III. Stat. Sci. 14: 427–456.CrossRefGoogle Scholar
  86. Sinclair, A. R. E. 1991. Science and the practice of wildlife management. J. Wildl. Manage. 55: 767–773.CrossRefGoogle Scholar
  87. Skalski, J. R., and D. S. Robson. 1992. Techniques for Wildlife Investigations: Design and Analysis of Capture Data. Academic, San Diego, CA.Google Scholar
  88. SPSS Inc. 1999. SPSS Base 10.0 for Windows User’s Guide. SPSS Inc., Illinois.Google Scholar
  89. StataCorp. 2005. Stata Statistical Software: Release 9. Texas.Google Scholar
  90. StatSoft. 2003. STATISTICA data analysis software system, version 6. Oklahoma.Google Scholar
  91. Seber, G. A. F. 1982. The Estimation of Animal Abundance and Related Parameters, 2nd Edition. Griffin, London.Google Scholar
  92. Steidl, R. J. 2006. Model selection, hypothesis testing, and risks of condemning analytical tools. J. Wildl. Manage. 70: 1497–1498.CrossRefGoogle Scholar
  93. Steidl R. J., J. P. Hayes, and E. Schauber. 1997. Statistical power in wildlife research. J. Wildl. Manage. 61: 270–279.CrossRefGoogle Scholar
  94. Stephens, P. A., S. W. Buskirk, and C. M. del Rio. 2007a. Inference in ecology and evolution. Trends Ecol. Evol. 22: 192–197.PubMedCrossRefGoogle Scholar
  95. Stephens, P. A., S. W. Buskirk, G. D. Hayward, and C. M. Del Rio. 2007b. A call for statistical pluralism answered. J. Appl. Ecol. 44: 461–463.CrossRefGoogle Scholar
  96. Stewart-Oaten, A., W. W. Murdoch, and K. R. Parker. 1986. Environmental impact assessment: “Pseudoreplication” in time? Ecology 67: 929–940.CrossRefGoogle Scholar
  97. Sutherland, W. J. 2006. Planning a research programme, in W. J. Sutherland, Ed. Ecological Census Techniques, 2nd Edition, pp. 1–10. Cambridge University, Cambridge.Google Scholar
  98. SYSTAT. 2002. SYSTAT for Windows, version 10.2. SYSTAT software Inc., California.Google Scholar
  99. Thompson, S. K. 2002. Sampling, 2nd Edition. John Wiley and Sons, New York.Google Scholar
  100. Thompson, W. L. 2002. Towards reliable bird surveys: accounting for individuals present but not detected. Auk 119(1): 18–25.CrossRefGoogle Scholar
  101. Thompson, S. K., and G. A. F. Seber. 1996. Adaptive Sampling. John Wiley and Sons, New York.Google Scholar
  102. Thompson, W. L., G. C. White, and C. Gowan. 1998. Monitoring vertebrate populations. Academic, New York.Google Scholar
  103. Tufte, E. R. 1983. The visual display of quantitative information. Graphics, Chesire, CT.Google Scholar
  104. Tufte, E. R. 2001. The visual display of quantitative information, 2nd Edition. Graphics, Chesire, CT.Google Scholar
  105. Venables, W. N., and B. D. Ripley. 2002. Modern applied statistics with S, 4th Edition. Springer-Verlag, New York.Google Scholar
  106. Verner, J., and K. A. Milne. 1990. Analyst and observer variability in density estimates from spot mapping. Condor 92: 313–325.CrossRefGoogle Scholar
  107. Walters, C. J. 1986. Adaptive Management of Renewable Resources. Macmillan, New York.Google Scholar
  108. Walters, C. J., and C. S. Holling. 1990. Large-scale management experiments and learning by doing. Ecology 71: 2060–2068.CrossRefGoogle Scholar
  109. White, G. C. 1996. NOREMARK: population estimation from mark-resighting surveys. Wildl. Soc. Bull. 24: 50–52.Google Scholar
  110. White, G. C., and K. P. Burnham. 1999. Program MARK: survival estimation from populations of marked animals. Bird Study 46(Suppl.): 120–139.CrossRefGoogle Scholar
  111. Williams, B. K. 1996. Adaptive optimization and the harvest of biological populations. Math. Biosci. 136: 1–20.PubMedCrossRefGoogle Scholar
  112. Williams, B. K., J. D. Nichols, and M. J. Conroy. 2002. Analysis and Management of Animal Populations. Academic, San Diego, CA.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Personalised recommendations