Advertisement

More Vision for SLAM

  • Simon Lacroix
  • Thomas Lemaire
  • Cyrille Berger
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 8)

SLAM has been identified as a key problem in mobile robotics for over 20 years [4, 46], and has received much attention since, especially these last 10 years. An overview of the problem and the main proposed solutions can be found in [10, 11]. Dozens of robots now use on-board SLAM solutions on an everyday basis in laboratories.

First SLAM solutions concerned robots evolving on a 2D plane, that perceive the environment with a laser range finder. It is only quite recently that solutions to SLAM using vision have been proposed: first using stereovision [16, 41], and then with monocular cameras. A large amount of contributions to the latter problem have rapidly been proposed since the pioneerwork of [7] (see for example [35, 6, 21, 13]), and a commercial software is available since 2005 [28] – though only applicable to robots evolving on a 2D plane.

Keywords

Planar Patch Loop Closing Data Association Problem Graphic Information System Harris Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Asmar, D.C., Zelek, J.S., Abdallah, S.M.: Tree trunks as landmarks for outdoor vision slam. Conference on Computer Vision and Pattern Recognition Workshop (2006). DOI http://doi. ieeecomputersociety.org/10.1109/CVPRW.2006.207
  2. 2.
    Ayache, N., Faugeras, O.: Building a consistent 3D representations of a mobile robot environment by combining multiple stereo views. In: 10th International Joint Conference on Artificial Intelligence, Milan (Italy), pp. 808-810 (1987)Google Scholar
  3. 3.
    Baker, S., Matthews, I.: Equivalence and efficiency of image alignment algorithms. In: Proceedings of the 2001 IEEE Conference on Computer Vision and Pattern Recognition, Kauai, USA (2001)Google Scholar
  4. 4.
    Chatila, R., Laumond, J.P.: Position referencing and consistent world modeling for mobile robots. In: IEEE International Conference on Robotics and Automation, St Louis (USA), pp. 138-145 (1985)Google Scholar
  5. 5.
    Dailey, M., Parnichkun, M.: Simultaneous localization and mapping with stereo vision. In: Proceedings of the International Conference on Automation, Robotics, and Computer Vision, Singapore (2006)Google Scholar
  6. 6.
    Davison, A.: Real-time simultaneous localisation and mapping with a single camera. In: IEEE International Conference on Computer Vision, Nice (France), pp. 1403-1410 (2003)CrossRefGoogle Scholar
  7. 7.
    Davison, A., Kita, N.: Sequential localisation and map-building for real-time computer vision and robotics. Robotics and Autonomous Systems 36, 171-183 (2001)CrossRefGoogle Scholar
  8. 8.
    Dissanayake, G., Newman, P.M., Durrant-Whyte, H.F., Clark, S., Csorba, M.: A solution to the simultaneous localization and map building (SLAM) problem. IEEE Transactions on Robotic and Automation 17(3), 229-241 (2001)CrossRefGoogle Scholar
  9. 9.
    Dufournaud, Y., Schmid, C., Horaud, R.: Matching images with different resolutions. In: International Conference on Computer Vision and Pattern Recognition, Hilton Head Island, SC (USA), pp. 612-618 (2000)Google Scholar
  10. 10.
    Durrant-Whyte, H., Bailey, T.: Simultaneous Localisation and Mapping (SLAM): Part I The Essential Algorithms. IEEE Robotics and Automation Magazine 13(2), 99-110 (2006)CrossRefGoogle Scholar
  11. 11.
    Durrant-Whyte, H., Bailey, T.: Simultaneous Localisation and Mapping (SLAM): Part II State of the Art. IEEE Robotics and Automation Magazine 13(3), 108-117 (2006)CrossRefGoogle Scholar
  12. 12.
    Eade, E., Drummond, T.: Edge landmarks in monocular slam. In: British Machine Vision Conference, Edinburgh (UK) (2006)Google Scholar
  13. 13.
    Eade, E., Drummond, T.: Scalable monocular SLAM. In: Conference on Computer Vision and Pattern Recognition, New York (USA), pp. 469-476 (2006)Google Scholar
  14. 14.
    Estrada, C., Neira, J., Tards, J.: Hierarchical SLAM: real-time accurate mapping of large environments. IEEE Transactions on Robotics 21(4), 588-596 (2005). URL http://webdiis.unizar.es/∼jdtardos/papers/Estrada\_TRO\_2005.pdf
  15. 15.
    Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press (2004)Google Scholar
  16. 16.
    Jung, I.K., Lacroix, S.: A robust interest point matching algorithm. In: 8th International Conference on Computer Vision, Vancouver (Canada) (2001)Google Scholar
  17. 17.
    Jung, I.K., Lacroix, S.: High resolution terrain mapping using low altitude aerial stereo imagery. In: International Conference on Computer Vision, Nice (France)) (2003)Google Scholar
  18. 18.
    Kwok, N., Dissanayake, G.: Bearing-only SLAM in indoor environments using a modified particle filter. In: Australasian Conference on Robotics and Automation, Brisbane (Australia) (2003)Google Scholar
  19. 19.
    Lemaire, T., Lacroix, S.: Long term SLAM with panoramic vision. Journal of Field Robotics 24(1-2), 91-111 (2007)CrossRefGoogle Scholar
  20. 20.
    Lemaire, T., Lacroix, S.: Monocular-vision based SLAM using line segments. In: IEEE International Conference on Robotics and Automation, Roma (Italy) (2007)Google Scholar
  21. 21.
    Lemaire, T., Lacroix, S., Sola, J.: A practicle bearing-only SLAM algorithm. In: IEEE International Conference on Intelligent Robots and Systems, Edmonton (Canada) (2005)Google Scholar
  22. 22.
    Lowe, D.: Distinctive features from scale-invariant keypoints. International Journal on Computer Vision 60(2), 91-110 (2004)CrossRefGoogle Scholar
  23. 23.
    Malis, E.: Improving vision-based control using efficient second-order minimization techniques. In: Proceedings of the 2004 IEEE International Conference on Robotics and Automation, New Orleans, USA (2004)Google Scholar
  24. 24.
    Matthies, L.: Toward stochastic modeling of obstacle detectability in passive stereo range imagery. In: IEEE International Conference on Computer Vision and Pattern Recognition, Champaign, Illinois (USA), pp. 765-768 (1992)Google Scholar
  25. 25.
    Molton, N., Davison, A., Reid, I.: Locally planar patch features for real-time structure from motion. In: British Machine Vision Conference, London (UK) (2004)Google Scholar
  26. 26.
    Montemerlo, M., Thrun, S., Wegbreit, B.: Fastslam 2.0: An improved particle filtering algorithm for simultaneous localization and mapping that provably converges. In: International Conference on Artificial Intelligence (AAAI) (2003). URL http://www- 2.cs.cmu.edu/∼mmde/mmdeijcai2003.pdf
  27. 27.
    Mouragnon, E., Lhuillier, M., Dhome, M., Dekeyser, F., Sayd, P.: Monocular vision based SLAM for mobile robots. In: 18th International Conference on Pattern Recognition, Hongkong, China (2006)Google Scholar
  28. 28.
    Munich, M., Pirjanian, P., Bernardo, E.D., Goncalves, L., Karlsson, N., Lowe, D.: SIFT-ing through features with ViPR. IEEE Robotics and Automation Magazine 13(3), 72-77 (2006)CrossRefGoogle Scholar
  29. 29.
    Neira, J., Tard ós, J.: Data association in stochastic mapping using the joint compatibility test. IEEE Transactions on Robotics 17(6), 890-897 (2001)CrossRefGoogle Scholar
  30. 30.
    Nettleton, E., Gibbens, P., Durrant-Whyte, H.: Closed form solutions to the multiple platform simultaneous localisation and map building (slam) problem. In: SPIE AeroSense conference, Orlando, Fl (USA) (2000)Google Scholar
  31. 31.
    Nettleton, E., Thrun, S., Sukkarieh, H.D.W.S.: Decentralised SLAM with low-bandwidth communication for teams of vehicles. In: International Conference on Field And Service Robotics , Yamanashi (Japan) (2003)Google Scholar
  32. 32.
    Newman, P.: On the structure and solution of the simultaneous localisation and map building problem. Ph.D. thesis, Australian Centre for Field Robotics - The University of Sydney (1999). URL http://oceanai.mit.edu/pnewman/papers/pmnthesis.pdf
  33. 33.
    Newman, P.M., Leonard, J.J.: Consistent convergent constant time SLAM. In: International Joint Conference on Artificial Intelligence, Acapulco (Mexico) (2003). URL http://www.robots.ox.ac.uk/∼pnewman/papers/IJCAI2003.pdf
  34. 34.
    Nieto, J., Guivant, J., Nebot, E.: DenseSLAM: Simultaneous localisation and dense mapping. International Journal of Robotics Research 25(8), 711-744 (2006)CrossRefGoogle Scholar
  35. 35.
    Nister, D.: An efficient solution to the five-point relative pose problem. In: IEEE Conference on Computer Vision and Pattern Recognition, Madison, Wi. (USA) (2003)Google Scholar
  36. 36.
    Posner, I., Schroeter, D., Newman, P.: Using scene similarity for place labeling. In: International Symposium on Experimental Robotics, Rio de Janeiro (Brazil) (2006)Google Scholar
  37. 37.
    Pressigout, M., Marchand, E.: Real-time hybrid tracking using edge and texture information. International Journal of Robotics Research 26(7), 689-713 (2007)CrossRefGoogle Scholar
  38. 38.
    Schmid, C., Mohr, R.: Local greyvalue invariants for image retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(5) (1997)Google Scholar
  39. 39.
    Schmid, C., Mohr, R., Bauckhage, C.: Comparing and evaluating interest points. In: International Conference on Computer Vision, Bombay, India (1998)Google Scholar
  40. 40.
    Schmid, C., Zisserman, A.: Automatic line matching across views. In: IEEE Conference on Computer Vision and Pattern Recognition, San Juan, Porto Rico (1997)Google Scholar
  41. 41.
    Se, S., Lowe, D., Little, J.: Mobile robot localization and mapping with uncertainty using scale-invariant visual landmarks. International Journal of Robotics Research 21(8), 735-758 (2002)CrossRefGoogle Scholar
  42. 42.
    Se, S., Lowe, D., Little, J.: Vision based global localization and mapping for mobile robots. IEEE Transactions on Robotics 21(3), 364-375 (2005)CrossRefGoogle Scholar
  43. 43.
    Silveira, G., Malis, E., Rives, P.: Real-time robust detection of planar regions in a pair of images. In: IEEE/RSJ International Conference on Intelligent Robots Systems, Beijing (China) (2006)Google Scholar
  44. 44.
    Silveira, G., Malis, E., Rives, P.: An efficient direct method for improving visual SLAM. In: IEEE International Conference on Robotics and Automation, Roma (Italy) (2007)Google Scholar
  45. 45.
    Smith, P., Reid, I., Davison, A.: Real-time monocular SLAM with straight lines. In: British Machine Vision Conference, Edinburgh (UK) (2006)Google Scholar
  46. 46.
    Smith, R., Self, M., Cheeseman, P.: A stochastic map for uncertain spatial relationships. In: Robotics Research: The Fourth International Symposium, Santa Cruz (USA), pp. 468-474 (1987)Google Scholar
  47. 47.
    Tapus, A., Siegwart, R.: Bayesian sensory-motor models and programs, chap. Topological SLAM using Fingerprints of Places. Springer-Verlag (2007)Google Scholar
  48. 48.
    Thrun, S., Liu, Y.: Multi-robot slam with sparse extended information filters. In: International Symposium of Robotics Research, Sienna (Italy) (2003)Google Scholar
  49. 49.
    Thrun, S., Liu, Y., Koller, D., Ng, A., Ghahramani, Z., Durrant-Whyte, H.: Simultaneous Localization and Mapping With Sparse Extended Information Filters. International Journal ofRobotics Research 23(7-8), 693-716 (2004)CrossRefGoogle Scholar
  50. 50.
    Wijesoma, W.S., Perera, L., Adams, M.: Toward multidimensional assignment data association in robot localization and mapping. IEEE Transactions on Robotics 22(2), 350-365 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Simon Lacroix
    • 1
  • Thomas Lemaire
    • 1
  • Cyrille Berger
    • 1
  1. 1.LAAS-CNRSUniversity of ToulouseFrance

Personalised recommendations