Skip to main content

Wald's Sequential Analysis for Time-constrained Vision Problems

  • Chapter
Unifying Perspectives in Computational and Robot Vision

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 8))

In many decision problems in computer vision, both classification errors and time to decision characterise the quality of an algorithmic solution. This is especially true for applications of vision to robotics where real-time response is typically required.

Time-constrained classification, detection and matching problems can be often formalised in the framework of sequential decision-making. We show how to derive quasi-optimal time-constrained solutions for three different vision problems by applying Wald’s sequential analysis. In particular, we adapt and generalise Wald’s sequential probability ratio test (SPRT) and apply it to the three vision problems: (i) face detection, (ii) real-time detection of distinguished regions (interest points) and (iii) establishing correspondences by the RANSAC algorithm with application e.g. in SLAM, 3D reconstruction and object recognition.

In the face detection problem, we are interested in learning the fastest detector satisfying constraints on false positive and false negative rates.We solve the problem by WaldBoost [15], a combination of Wald’s sequential probability ratio test and AdaBoost learning [2]. The solution can be viewed as a principled way to build a close-to-optimal “cascade of classifiers” [22]. Naturally, the approach is applicable to other classes of objects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Casals, J.A., Laporte, E.: Automatic guidance of an assistant robot in laparoscopic surgery. In: IEEE Int’l Conf. on Robotics and Automation, pp. 895-900. Minneapolis, USA (1996)

    Google Scholar 

  2. Bouguet, J.Y.: Camera calibration matlab toolbox. MRL - Intel Corp. URL http://$www. vision.caltech.edu/bouguetj/calib-doc/$

  3. Bouthemy, P.: A maximum likelihood framework for determining moving edges. IEEE Transactions on Pattern Analysis and Machine Intelligence 11(5), 499-511 (1989)

    Article  Google Scholar 

  4. Breeuwer, M., Zylka, W., Wadley, J., Falk, A.: Detection and correction of geometric distortion in 3D CT/MR images. In: Proc. of Computer Assisted Radiology and Surgery, pp. 11-23. Paris (2002)

    Google Scholar 

  5. Burschka, D., Corso, J.J., Dewan, M., Hager, G., Lau, W., Li, M., Lin, H., Marayong, P., Ramey, N.: Navigating inner space: 3-d assistance for minimally invasive surgery. In: Workshop Advances in Robot Vision, in conjunction with the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 67-78. Sendai, Japan (2004)

    Google Scholar 

  6. Climent, J., Mars, P.: Automatic instrument localization in laparoscopic surgery. Electronic Letters on Computer Vision and Image Analysis 4(1), 21-31 (2004)

    Google Scholar 

  7. Dementhon, D., Davis, L.S.: Model-based object pose in 25 lines of code. IJCV 15(1), 123-141 (1995)

    Article  Google Scholar 

  8. Doignon, C., Graebling, P., de Mathelin, M.: Real-time segmentation of surgical instruments inside the abdominal cavity using a joint hue saturation color feature. Real-Time Imaging 11, 429-442 (2005)

    Article  Google Scholar 

  9. Doignon, C., de Mathelin, M.: A degenerate conic-based method for a direct fitting and 3d pose of cylinders with a single perspective view. In: IEEE Int’l Conf. on Robotics and Automation, pp. 4220-4225. Roma, Italy (2007)

    Google Scholar 

  10. Doignon, C., Nageotte, F., de Mathelin, M.: The role of insertion points in the detection and positioning of instruments in laparoscopy for robotic tasks. In: In Proceedings of the Int’l. Conference on Medical Image Computing and Computer-Assisted Intervention - MICCAI, pp. 527-534 (Part I). Copenhaguen, Denmark (2006)

    Google Scholar 

  11. Espiau, B., Chaumette, F., Rives, P.: A new approach to visual servoing in robotics. IEEE Trans. Robotics and Automation 8(3), 313-326 (1992)

    Article  Google Scholar 

  12. Goryn, D., Hein, S.: On the estimation of rigid body rotation from noisy data. IEEE Transactions on Pattern Analysis and Machine Intelligence 17(12), 1219-1220 (1995)

    Article  Google Scholar 

  13. Grunert, P., Ma ürer, J., M üller-Forell, W.: Accuracy of stereotactic coordinate transformation using a localisation frame and computed tomographic imaging. Neurosurgery 22, 173-203 (1999)

    Google Scholar 

  14. Haralick, R., Lee, C., Ottenberg, K., Nlle, M.: Analysis and solutions of the three-point perspective pose estimation problem. In: IEEE Conf. Computer Vision and Pattern Recognition, pp. 592-598. Maui, Hawai, USA (1991)

    Google Scholar 

  15. Haralick, R.M., Shapiro, L.G.: Computer and Robot Vision, vol. 1. Addison-Wesley Publishing (1992)

    Google Scholar 

  16. Hartley, R., Zisserman, A.: Multiple view geometry in computer vision. Cambridge Univ. Press (2000)

    Google Scholar 

  17. Hong, J., Dohi, T., Hashizume, M., Konishi, K., Hata, N.: An ultrasound-driven needle insertion robot for percutaneous cholecystostomy. Journal of Physics in Med. and Bio. pp. 441-455 (2004)

    Google Scholar 

  18. Horaud, R., Conio, B., Leboulleux, O., Lacolle, B.: An analytic solution for the perspective point problem. Computer Vision, Graphics, and Image Processing 47, 33-44 (1989)

    Article  Google Scholar 

  19. Hutchinson, S., Hager, G., Corke, P.: A tutorial on visual servo control. IEEE Trans. Robotics and Automation 12(5), 651-670 (1996)

    Article  Google Scholar 

  20. Kragic, D., Christensen, C.: Cue integration for visual servoing. IEEE Trans. on Robotics and Autom. 17(1), 19-26 (2001)

    Google Scholar 

  21. Krupa, A., Chaumette, F.: Control of an ultrasound probe by adaptive visual servoing. In: IEEE/RSJ Int’l. Conf. on Intelligent Robots and Systems, vol. 2, pp. 2007-2012. Edmonton, Canada (2005)

    Chapter  Google Scholar 

  22. Krupa, A., Gangloff, J., Doignon, C., de Mathelin, M., Morel, G., Leroy, J., Soler, L., Marescaux, J.: Autonomous 3-d positioning of surgical instruments in robotized laparoscopic surgery using visual servoing. IEEE Trans. on Robotics and Automation, special issue on Medical Robotics 19(5), 842-853 (2003)

    Article  Google Scholar 

  23. Lee, S., Fichtinger, G., Chirikjian, G.S.: Numerical algorithms for spatial registration of line fiducials from cross-sectional images. American Ass. of Physicists in Medicine 29(8), 1881-1891 (2002)

    Google Scholar 

  24. Marchand, E., Chaumette, F.: Virtual visual servoing: a framework for real-time augmented reality. In: Proceedings of the EUROGRAPHICS Conference, vol. 21 (3 of Computer Graphics Forum), pp. 289-298. Saarbr ücken, Germany (2002)

    Google Scholar 

  25. Maurin, B.: Conception et r éalisation d’un robot d’insertion d’aiguille pour les proc édures percutan ées sous imageur scanner. Ph.D. thesis, Louis Pasteur University, France (2005)

    Google Scholar 

  26. Maurin, B., Doignon, C., de Mathelin, M., Gangi, A.: Pose reconstruction from an uncalibrated computed tomography imaging device. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Madison, WN, U.S.A. (2003)

    Google Scholar 

  27. Maurin, B., Gangloff, J., Bayle, B., de Mathelin, M., Piccin, O., Zanne, P., Doignon, C., Soler, L., Gangi, A.: A parallel robotic system with force sensors for percutaneous procedures under ct-guidance. In: Int’l Conf. on Medical Image Computing and Computer-Assisted Intervention. St Malo, France (2004)

    Google Scholar 

  28. Maybank, S.: The cross-ratio and the j-invariant. Geometric invariance in computer vision pp. 107-109 (1992)

    Google Scholar 

  29. Nageotte, F.: Contributions à la suture assist ée par ordinateur en chirurgie mini-invasive. Ph.D. thesis, Louis Pasteur University, France (2005)

    Google Scholar 

  30. Nageotte, F., Doignon, C., de Mathelin, M., Zanne, P., Soler, L.: Circular needle and needleholder localization for computer-aided suturing in laparoscopic surgery. In: SPIE Medical Imaging, pp. 87-98. San Diego, USA (2005)

    Google Scholar 

  31. Nageotte, F., Zanne, P., Doignon, C., de Mathelin, M.: Visual servoing-based endoscopic path following for robot-assisted laparoscopic surgery. In: IEEE/RSJ Int’l Conf. on Intelligent Robots and Systems, pp. 2364-2369. Beijin, China (2006)

    Chapter  Google Scholar 

  32. Papanikolopoulos, N., Khosla, P., Kanade, T.: Visual tracking of a moving target by a camera mounted on a robot: A combination of control and vision. IEEE Trans. Rob. and Autom. 9(1), 14-35 (1993)

    Article  Google Scholar 

  33. Quan, L., Lan, Z.: Linear n-point camera pose determination. IEEE Transactions on PAMI 21(8) (1999)

    Google Scholar 

  34. Sundareswaran, V., Behringer, R.: Visual-servoing-based augmented reality. In: In Proceedings of the IEEE Int’l. Workshop on Augmented Reality. San Francisco, USA (1998)

    Google Scholar 

  35. Susil, R.C., Anderson, J.H., Taylor, R.H.: A single image registration method for CT guided interventions. In: Proceedings of the Second Int’l Conf. on Medical Image Computing and Computer-Assisted Intervention, pp. 798-808. Cambridge, UK (1999)

    Chapter  Google Scholar 

  36. Taylor, R., Funda, J., LaRose, D., Treat, M.: A telerobotic system for augmentation of endoscopic surgery. In: IEEE Int’l Conf. on Engineering in Med. and Bio., pp. 1054-1056. Paris, France (1992)

    Chapter  Google Scholar 

  37. Tommasini, T., Fusiello, A., Trucco, E., Roberto, V.: Making good features track better. In: IEEE Int’l Conf. on Computer Vision and Pattern Recognition, pp. 178-183. Santa Barbara, USA (1998)

    Google Scholar 

  38. Tonet, O., Ramesh, T., Megali, G., Dario, P.: Image analysis-based approach for localization of endoscopic tools. In: Surgetica’04, pp. 221-228. Chambery, France (2005)

    Google Scholar 

  39. Tsai, R.: A versatile camera calibration technique for high-accuracy 3d machine vision metrology using off-the shelf tv cameras and lenses. IEEE Journal of Robotics and Automation 3(4), 323-344 (1987)

    Article  Google Scholar 

  40. Umeyama, S.: Least-squares estimation of transformation parameters between two point patterns. IEEE Transactions on PAMI 13(4), 376-380 (1991)

    Google Scholar 

  41. Wang, Y.F., Uecker, D.R., Wang, Y.: A new framework for vision-enabled and robotically assisted minimally invasive surgery. Journal of Computerized Medical Imaging and Graphics 22,429-437 (1998)

    Article  Google Scholar 

  42. Wei, G.Q., Arbter, K., Hirzinger, G.: Automatic tracking of laparoscopic instruments by colorcoding. In: S. Verlag (ed.) Proc. First Int. Joint Conf. CRVMed-MRCAS’97, pp. 357-366. Grenoble, France (1997)

    Google Scholar 

  43. Zhang, X., Payandeh, S.: Application of visual tracking for robot-assisted laparoscopic surgery. Journal of Robotic systems 19(7), 315-328 (2002)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Matas, J., Šochman, J. (2008). Wald's Sequential Analysis for Time-constrained Vision Problems. In: Kragic, D., Kyrki, V. (eds) Unifying Perspectives in Computational and Robot Vision. Lecture Notes in Electrical Engineering, vol 8. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-75523-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-75523-6_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-75521-2

  • Online ISBN: 978-0-387-75523-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics