Skip to main content

Extracting Planar Kinematic Models Using Interactive Perception

  • Chapter
Unifying Perspectives in Computational and Robot Vision

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 8))

Roboticists are working towards the deployment of autonomous mobile manipulators in unstructured and dynamic environments. Adequate autonomy and competency in unstructured environments would open up a variety of important applications for robotics, ranging from planetary exploration to elder care and from the disposal of improvised explosive devices to flexible manufacturing and construction in collaborationwith human experts. Ongoing research efforts seek to enable the use of autonomous robots for these applications through the development of adequate hardware platforms [10, 26, 31], robust and task-oriented control strategies [19], and new learning frameworks [2, 5, 6, 27].

For unstructured and dynamic environments, it is not possible to provide the robot with a detailed a priori model of the world. Consequently, an autonomous robot has to continuously acquire perceptual information to successfully execute mobility and manipulation tasks [12, 17, 25, 29]. This extraction can be performed most effectively, if it occurs in the context of a specific task.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aloimonos J. and Weiss I. and Bandyopadhyay A.: Active Vision. International Journal of Computer Vision 1, 333-356 (1988)

    Article  Google Scholar 

  2. Azad, P., Asfour, T., Dillmann, R.: Toward an Unified Representation for Imitation of Human Motion on Humanoids. In: International Conference on Robotics and Automation. Rome, Italy (2007)

    Google Scholar 

  3. Bajcsy, R.: Active Perception. IEEE Proceedings 76(8), 996-1006 (1988)

    Google Scholar 

  4. Blake, A., Yuille, A.: Active Vision. MIT Press (1992)

    Google Scholar 

  5. Brock, O., Fagg, A., Grupen, R., Platt, R., Rosenstein, M., Sweeney, J.: A Framework for Learning and Control in Intelligent Humanoid Robots. International Journal of Humanoid Robotics 2(3), 301-336 (2005)

    Article  Google Scholar 

  6. Brooks, R., Aryananda, L., Edsinger, A., Fitzpatrick, P., Kemp, C., O’Reilly, U.M., TorresJara, E., Varshavskaya, P., Weber, J.: Sensing and manipulating built-for-human environments. International Journal of Humanoid Robotics 1(1), 1-28 (2004)

    Article  Google Scholar 

  7. Christiansen, A.D., Mason, M., Mitchell, T.: Learning reliable manipulation strategies without initial physical models. In: International Conference on Robotics and Automation, vol. 2, pp. 1224-1230. Cincinnati, Ohio, USA (1990)

    Chapter  Google Scholar 

  8. Cohn, D.A., Ghahramani, Z., Jordan, M.I.: Active Learning with Statistical Methods. Journal of AI Research 4, 129-145 (1996)

    MATH  Google Scholar 

  9. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. MIT Press and McGraw-Hill (2001)

    MATH  Google Scholar 

  10. Deegan, P., Thibodeau, B., Grupen, R.: Designing a Self-Stabilizing Robot For Dynamic Mobile Manipulation. In: Robotics: Science and Systems - Workshop on Manipulation for Human Environments. Philadelphia, Pennsylvania, USA (2006)

    Google Scholar 

  11. Edsinger, A.: Robot Manipulation in Human Environments. Ph.D. thesis, Massachusetts Institute of Technology (2007)

    Google Scholar 

  12. Edsinger, A., Kemp, C.C.: Manipulation in Human Environments. In: IEEE/RSJ International Conference on Humanoid Robotics. Beijing, China (2006)

    Google Scholar 

  13. Fitzpatrick, P., Metta, G.: Grounding vision through experimental manipulation. Philosophical Transactions of the Royal Society: Mathematical, Physical, and Engineering Sciences 361(1811),2165-2185 (2003)

    Article  MathSciNet  Google Scholar 

  14. Forsyth, D.A., Ponce, J.: Computer Vision: A Modern Approach. Prentice Hall Professional Technical Reference (2002)

    Google Scholar 

  15. Hutchinson, S.A., Hager, G.D., Corke, P.I.: A tutorial on visual servo control. IEEE Transactions on Robotics and Automation 12(5), 651-670 (1996)

    Article  Google Scholar 

  16. Intel: http://www.intel.com/technology/computing/opencv/

  17. Katz, D., Brock, O.: Interactive Perception: Closing the Gap Between Action and Perception. In: International Conference on Robotics and Automation Workshop: From features to actions - Unifying perspectives in computational and robot vision. Rome, Italy (2007)

    Google Scholar 

  18. Katz, D., Horrell, E., Yang, Y., Burns, B., Buckley, T., Grishkan, A., Zhylkovskyy, V., Brock, O., Learned-Miller, E.: The UMass Mobile Manipulator UMan: An Experimental Platform for Autonomous Mobile Manipulation. In: Workshop on Manipulation in Human Environments at Robotics: Science and Systems (2006)

    Google Scholar 

  19. Khatib, O., Yokoi, K., Brock, O., Chang, K.S., Casal, A.: Robots in Human Environments: Basic Autonomous Capabilities. International Journal of Robotics Research 18(7), 684-696 (1999)

    Google Scholar 

  20. Koederink, J.J., Van Doorn, A.J.: Invariant properties of the motion parallax field due to the movement of rigid bodies relative to an observer. Optica Acta. 22, 773-791 (1975)

    Google Scholar 

  21. Lucas, B.D., Kanade, T.: An Iterative Image Registration Technique with an Application to Stereo Vision (DARPA). In: Proceedings of the 1981 DARPA Image Understanding Workshop, pp. 121-130 (1981)

    Google Scholar 

  22. Martin J ägersand: On-line Estimation of Visual-Motor Models for Robot Control and Visual Simulation. Ph.D. thesis, University of Rochester (1997)

    Google Scholar 

  23. Maybank, S.: The Angular Velocity Associated with the Optical Flowfield Arising from Motion through a Rigid Environment. In: Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, vol. 401, pp. 317-326 (1985)

    Google Scholar 

  24. Metta, G., Fitzpatrick, P.: Early integration of vision and manipulation. Adaptive Behavior 11(2),109-128 (2003)

    Article  Google Scholar 

  25. Neo, E.S., Sakaguchi, T., Yokoi, K., Kawai, Y., Maruyama, K.: Operating Humanoid Robots in Human Environments. In: Workshop on Manipulation for Human Environments, Robotics: Science and Systems (2006)

    Google Scholar 

  26. Nishiwaki, K., Kuffner, J., Kagami, S., Inaba, M., Inoue, H.: The experimental humanoid robot H7: a research platform for autonomous behaviour. Philosophical Transactions of the Royal Society 365, 79-108 (2007)

    Article  Google Scholar 

  27. Saxena, A., Driemeyer, J., Kearns, J., Ng, A.Y.: Robotic Grasping of Novel Objects. In: Neural Information Processing Systems (2006)

    Google Scholar 

  28. Stoytchev, A.: Behavior-Grounded Representation of Tool Affordances. In: International Conference on Robotics and Automation, pp. 3071-3076. Barcelona, Spain (2005)

    Google Scholar 

  29. Sutton, M., Stark, L., Bowyer, K.: Function from visual analysis and physical interaction: a methodology for recognition of generic classes of objects. Image and Vision Computing 16, 746-763 (1998)

    Article  Google Scholar 

  30. Waxman, A.M., Ullman, S.: Surface Structure and Three-Dimensional Motion from Image Flow Kinematics. The International Journal of Robotics Research 4, 72-94 (1985)

    Article  Google Scholar 

  31. Wimboeck, T., Ott, C., Hirzinger, G.: Impedance Behaviors for Two-Handed Manipulation: Design and Experiments. In: International Conference on Robotics and Automation. Rome, Italy (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Katz, D., Brock, O. (2008). Extracting Planar Kinematic Models Using Interactive Perception. In: Kragic, D., Kyrki, V. (eds) Unifying Perspectives in Computational and Robot Vision. Lecture Notes in Electrical Engineering, vol 8. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-75523-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-75523-6_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-75521-2

  • Online ISBN: 978-0-387-75523-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics