Image-Based Visual Servoing with Extra Task Related Constraints in a General Framework for Sensor-Based Robot Systems

  • Ruben Smits
  • Duccio Fioravanti
  • Tinne De Laet
  • Benedetto Allotta
  • Herman Bruyninckx
  • Joris De Schutter
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 8)

This paper shows the application of this general framework to the example application of image-based visual servoing combined with extra task related constraints in the 3D Cartesian space, this way showing the power and the practical advantages of this systematic approach. Extension to other constraints on extra sensor measurements (like distance), other task spaces or joint space is possible. The paper is structured as follows. Section 12.2 introduces the formulation of image-based visual servoing with extra task specific constraints in 3D Cartesian space inside the general framework. Section 12.3 defines the additional feature coordinates that are used to model task constraints. Subsequently, Section 12.4 details a velocity-based control scheme which uses these additional coordinates. Experimental results are presented in Section 12.5. Finally, Section 12.6 discusses the proposed approach and summarizes the main conclusions.


Kinematic Chain Visual Servoing Task Space Camera Frame Velocity Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
  2. 2.
    Ambler, A.P., Popplestone, R.J.: Inferring the positions of bodies from specified spatial relationships. Artificial Intelligence 6, 157-174 (1975)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Baeten, J., Bruyninckx, H., De Schutter, J.: Integrated vision/force robotics servoing in the task frame formalism. The International Journal of Robotics Research 22(10), 941-954 (2003)CrossRefGoogle Scholar
  4. 4.
    Bruyninckx, H.: Open RObot COntrol Software.
  5. 5.
    Bruyninckx, H., De Schutter, J.: Specification of force-controlled actions in the “Task Frame Formalism”: A survey. IEEE Transactions on Robotics and Automation 12(5), 581-589 (1996)CrossRefGoogle Scholar
  6. 6.
    Chesi, G., Prattichizzo, D., Vicino, A.: Visual servoing: Reaching the desired location following a straight line via polynomial parameterizations. In: Proc. IEEE International Conference on Robotics and Automation (ICRA’05). Barcelona, Spain (2005). On CD-ROMGoogle Scholar
  7. 7.
    Conticelli, F., Allotta, B.: Discrete-time robot visual feedback in 3D positioning tasks with depth adaptation. IEEE/ASME Transaction on Mechatronics 6(3), 356-363 (2001)CrossRefGoogle Scholar
  8. 8.
    De Schutter, J., De Laet, T., Rutgeerts, J., Decr é , W., Smits, R., Aertbeli ën, E., Claes, K., Bruyninckx, H.: Constraint-based task specification and estimation for sensor-based robot systems in the presence of geometric uncertainty. The International Journal of Robotics Research 26 (5),433-455 (2007)CrossRefGoogle Scholar
  9. 9.
    De Schutter, J., Rutgeerts, J., Aertbelien, E., De Groote, F., De Laet, T., Lefebvre, T., Verdonck, W., Bruyninckx, H.: Unified constraint-based task specification for complex sensorbased robot systems. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation, pp. 3618-3623. Barcelona, Spain (2005)Google Scholar
  10. 10.
    De Schutter, J., Van Brussel, H.: Compliant Motion I, II. The International Journal of Robotics Research 7(4), 3-33 (1988)CrossRefGoogle Scholar
  11. 11.
    Doty, K.L., Melchiorri, C., Bonivento, C.: A theory of generalized inverses applied to robotics. The International Journal of Robotics Research 12(1), 1-19 (1993)CrossRefGoogle Scholar
  12. 12.
    Espiau, B., Chaumette, F., Rives, P.: A new approach to visual servoing in robotics. IEEE Transactions on Robotics and Automation 8(3), 313-326 (1992)CrossRefGoogle Scholar
  13. 13.
    García-Aracil, N., Malis, E., Aracil-Santonja, R., P érez-Vidal, C.: Continuous visual servoing despite the changes of visibility in image features. IEEE Trans. Robot. 21(6), 1214-1220 (2005)CrossRefGoogle Scholar
  14. 14.
    Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press (2003)Google Scholar
  15. 15.
    Hogan, N.: Impedance control: An approach to manipulation. Parts I-III. Transactions of the ASME, Journal of Dynamic Systems, Measurement, and Control 107, 1-24 (1985)MATHCrossRefGoogle Scholar
  16. 16.
    Hogan, N.: Stable execution of contact tasks using impedance control. In: Proceedings of the 1987 IEEE International Conference on Robotics and Automation, pp. 1047-1054. Raleigh, NC (1987)CrossRefGoogle Scholar
  17. 17.
    Kazerooni, H.: On the robot compliant motion control. Transactions of the ASME, Journal of Dynamic Systems, Measurement, and Control 111, 416-425 (1989)MATHCrossRefGoogle Scholar
  18. 18.
    Latombe, J.C.: Robot motion planning, Int. Series in Engineering and Computer Science, vol. 124. Kluwer Academic Publishers, Boston, MA (1991)Google Scholar
  19. 19.
    Mason, M.T.: Compliance and force control for computer controlled manipulators. IEEE Transactions on Systems, Man, and Cybernetics SMC-11(6), 418-432 (1981)CrossRefGoogle Scholar
  20. 20.
    Mezouar, Y., Chaumette, F.: Path planning for robust image-based control. IEEE Transactions on Robotics and Automation 18(4), 534-549 (2002)CrossRefGoogle Scholar
  21. 21.
    Nakamura, Y.: Advanced robotics: redundancy and optimization. Addison-Wesley, Reading, MA (1991)Google Scholar
  22. 22.
    Samson, C., Le Borgne, M., Espiau, B.: Robot Control, the Task Function Approach. Clarendon Press, Oxford, England (1991)Google Scholar
  23. 23.
    Soetens, P.: A software framework for real-time and distributed robot and machine control. Ph.D. thesis, Department of Mechanical Engineering, Katholieke Universiteit Leuven, Belgium (2006)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Ruben Smits
    • 1
  • Duccio Fioravanti
    • 2
  • Tinne De Laet
    • 1
  • Benedetto Allotta
    • 2
  • Herman Bruyninckx
    • 1
  • Joris De Schutter
    • 1
  1. 1.Department of Mechanical EngineeringKatholieke Universiteit LeuvenBelgium
  2. 2.Department of Energetics “Sergio Stecco”Universitaá degli Studi di FirenzeFrance

Personalised recommendations