Adaptive Customer Profiles For Context Aware Services in a Mobile Environment

  • Mike Radmacher
Conference paper
Part of the IFIP — The International Federation for Information Processing book series (IFIPAICT, volume 251)


Mobile data communication generated 10 percent of the overall data revenue in Germany and between 2–3 percent worldwide [29] in 2004. This development is contradictory compared to the high investment (91.5 billion €) in networks and licenses that supported the UMTS infrastructure and thereby the mobile internet. An advertised-based revenue model [10] addresses an opportunity to increase the mobile data communication. Mobile customers and advertisers are matched based on the customer’s current situation (location, time and interests). Precise customer profiles, as a requirement to overcome the information overflow, and to enable a multilateral economically reasonable matching are indispensable but the profile’s quality is not given in reality. Without precise customer profiles there is no matching. With situation adaptive customer profiles the profile’s quality is increasing. Its design, realization and integration into the mobile operator’s infrastructure are the aim of this paper.


User Profile Mobile Environment Mobile Network Operator Mobile Internet Mobile Market 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 41.
    1. A. Albers, S. Figge and M. Radmacher, LOC3-Architecture Proposal for Efficient Subscriber Localisation in Mobile Commerce Infrastructures, Proceedings of 2nd IEEE International Workshop on Mobile Commerce and Service, Munich, Germany, 2005.Google Scholar
  2. 42.
    2. G. Amato and U. Straccia, User Profile Modelling and Applications to Digital Libraries, ECDL’ 99, Abiteboul, S., Vercoustre, A.-M.(Eds.), 1999, pp. 184–197.Google Scholar
  3. 43.
    3. M. Balabanović, and Y. Shoham, Fab: content-based, collaborative recommendation, Communication of the ACM, March 1997/Vol. 40, No. 3.Google Scholar
  4. 44.
    4. R. Bulander, M. Decker, B. Kölmel and G. Schiefer, Kontextsensitives mobiles Marketing, in: B. König-Ries, M. Klein (Hrsg.): Mobile Datenbanken und Informationssysteme, in Business, Technologie und Web. BTW 2005, Universität Karlsruhe 2005, pp. 11–20.Google Scholar
  5. 45.
    5. Bundesnetzagentur, 2006, Jahresbericht 2006. Bundesnetzagentur, Bonn.Google Scholar
  6. 46.
    6. R. Carreira, J.M. Crato, D. Gonçalves and J.A. Jorge, Evaluating Adaptive User Profiles for News Classification, 2004.Google Scholar
  7. 47.
    7. U. Fayyad, G. Piatetsky-Shapiro and P. Smyth, Knowledge Discovery and Data Mining Towards a Unifying Framework, 1996.Google Scholar
  8. 48.
    8. S. Figge, Situation-dependent services—a challenge for mobile network operators, Journal of Business Research, Volume 57, Issue 12, 2004, pp. 1416–1422.CrossRefGoogle Scholar
  9. 49.
    9. S. Figge and A. Albers, Individualising M-Commerce Services by Semantic User Situation Modelling, Proceedings of the 7th International Conference Wirtschaftsinformatik, Bamberg, 2005.Google Scholar
  10. 50.
    10. S. Figge and S. Theysohn, Quantifizierung IKS-basierter Marktleistungen-Analyse eines werbefinanzierten Geschäftsmodells für den Mobile Commerce, Wirtschafsinformatik 48(2), 2006, pp. 96–106.CrossRefGoogle Scholar
  11. 51.
    11. W.J. Frawley, G. Piatetsky-Shapiro and C.J. Matheus, Knowledge Discovery in Databases: An Overview. AAAI, 1992, pp. 56–70.Google Scholar
  12. 52.
    12. M. Goel, S. Sarkar, Web Site Personalization Using User Profile Information, AH2002, P. De Bra, P. Brusilovsky and R. Conejo, (Eds.), 2002, pp. 510–513.Google Scholar
  13. 53.
    13. D. Goren-Bar and O. Glinansky, FIT-recommending TV programs to family members. Computer & Graphics, 28, 2004, pp.149–156.CrossRefGoogle Scholar
  14. 54.
    14. A.R. Hevner, S.T. March, J. Park and S. Ram, Design Science Information Systems Research. MIS Quarterly, Vol. 28 No. 1, 2004, pp. 75–105.Google Scholar
  15. 55.
    15. C. Kaspar, O. von Wersch, I. Hochstatter, A. Albers, S. Figge, et al., Mobile Anwendungen-Best Practices in der TIME-Branche. Hrsg.: T. Hess, S. Hagenhoff, D. Hogrefe, C. Linnhoff-Popien, K. Rannenberg and F. Straube, Universitätsverlag Göttingen, 2005.Google Scholar
  16. 56.
    16. R.R. Korfnage, Query Enhancement by User Profiles, Joint BCS & ACM Symposium on Research & Development in Information Retrieval, 1984, pp.111–121.Google Scholar
  17. 57.
    17. R. Kraemer and P. Schwander, Bluetooth based wireless Internet applications for indoor hot spots: experience, 2000.Google Scholar
  18. 58.
    18. R.J. Lukose, E. Adar, J.R. Tyler and C. Sengupta, SHOCK: Communicating with Computational messages and Automatic Private Profiles, Proceedings of WWW 2003, May 20–24, Budapest, 2003, pp. 291–300.Google Scholar
  19. 59.
    19. B. Salem and M. Rauterberg, Multiple User Profile Merging (MUPE): Key Challenges for Environment Awareness, EUSAI 2004, pp. 196–206.Google Scholar
  20. 60.
    20. J. Schackmann, Ökonomische vorteilhafte Individualisierung und Personalisierung, 2002Google Scholar
  21. 61.
    21. M. Schuhmann, Individualität und Produktindividualisierung — Kundenprofile für die Personalisierung von Produkten, 2004.Google Scholar
  22. 62.
    22. C. Shapiro and H.R. Varian, Information Rules, 1999.Google Scholar
  23. 63.
    23. S. Singh, M. Shepherd, J. Duffy and C. Watters, An Adaptive User Profile for Filtering News Based on a User Interest Hierarchy, 2006.Google Scholar
  24. 64.
    24. U. Spitzer, Recommender Systeme im E-Commerce. Wirtschaftsuniversität Wien, 2005.Google Scholar
  25. 65.
    25. K. Sugiyama, K. Hatano and M. Yoshikawa, Adaptive Web Search Based on User Profile Constructed without Any Effort from Users, 2005.Google Scholar
  26. 66.
    26. P. Srinil, and O. Pinngern, Adaptive User Profile for Information Retrieval from the Web, 2002.Google Scholar
  27. 67.
    27. H. Takeda, P. Veerkamp, T. Tomiyama and H. Yoshikawam, Modeling Design Processes, AI Magazine, 1990, pp. 37–48.Google Scholar
  28. 68.
    28. V. Vaishnavi and B. Kuechler, Design Research in Information Systems, AIS 2006.Google Scholar
  29. 69.
    29. Vodafone Group Plc, Key Performance Indicators, 2006, Available:Google Scholar
  30. 70., Abruf am 2005-11-01Google Scholar
  31. 71.
    30. Y.Z. Wei, L. Moreau and N.R. Jennings, A Market-Based Approach to Recommender Systems, ACM Transactions on Information Systems (TOIS), 2005, pp. 227–266.Google Scholar
  32. 72.
    31. P. Zipkin, The limits of mass customization, Sloan Management Review 42,3, 2001, pp. 81–87.Google Scholar

Copyright information

© International Federation for Information Processing 2007

Authors and Affiliations

  • Mike Radmacher
    • 1
  1. 1.Chair of Mobile Business and Multilateral SecurityFrankfurt am MainGermany

Personalised recommendations