Skip to main content

Metabolic Consequences Of Intermittent Hypoxia

  • Conference paper

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 618))

Abstract

Insulin resistance is being recognized increasingly as the basis for the constellation of metabolic abnormalities that make up the metabolic syndrome, or Syndrome X. Insulin resistance is also the primary risk factor for the development of type 2 diabetes mellitus, which is currently reaching epidemic proportions by affecting more than 170 million people worldwide. A combination of environmental and genetic factors have led to a dramatic rise in visceral adiposity, the predominant factor causing insulin resistance and type 2 diabetes. Visceral adiposity is also the major risk factor for the development of Sleep Apnea (SA) -an association that has fueled interest in the co-morbidity of SA and the metabolic syndrome, but hampered attempts to ascribe an independent causative role for Sleep Apnea in the development of insulin resistance and type 2 diabetes. Numerous population and clinic-based epidemiologic studies have shown associations, often independent of obesity, between SA (or surrogates such as snoring) and measures of glucose dysregulation or type 2 diabetes. However, treatment of SA with continuous positive airway pressure (CPAP) has not been conclusive in demonstrating improvements in insulin resistance, perhaps due to the overwhelming effects of obesity. Here we show that in lean, otherwise healthy mice that exposure to intermittent hypoxia produced whole-body insulin resistance as determined by the hyperinsulinemic euglycemic clamp and reduced glucose utilization in oxidative muscle fibers, but did not cause a change in hepatic glucose output. Furthermore, the increase in insulin resistance was not affected by blockade of the autonomic nervous system. We conclude that intermittent hypoxia can cause acute insulin resistance in otherwise lean healthy animals, and the response occurs independent of activation of the autonomic nervous system.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Al Delaimy WK, Manson JE, Willett WC, Stampfer MJ and Hu FB. Snoring as a risk factor for type II diabetes mellitus: a prospective study. Am J Epidemiol155:387-393, 2002.

    Article  PubMed  Google Scholar 

  2. Brooks B, Cistulli PA, Borkman M, Ross G, McGhee S, Grunstein RR, Sullivan CE and Yue DK. Obstructive sleep apnea in obese noninsulin-dependent diabetic patients: effect of continuous positive airway pressure treatment on insulin responsiveness. J Clin Endocrinol Metab79:1681-1685, 1994.

    Article  CAS  PubMed  Google Scholar 

  3. Chin K, Shimizu K, Nakamura T, Narai N, Masuzaki H, Ogawa Y, Mishima M, Nakao K and Ohi M. Changes in intra-abdominal visceral fat and serum leptin levels in patients with obstructive sleep apnea syndrome following nasal continuous positive airway pressure therapy. Circulation100:706-712, 1999.

    CAS  PubMed  Google Scholar 

  4. Cooper BG, White JE, Ashworth LA, Alberti KG and Gibson GJ. Hormonal and metabolic profiles in subjects with obstructive sleep apnea syndrome and the acute effects of nasal continuous positive airway pressure (CPAP) treatment. Sleep18:172-179, 1995.

    CAS  PubMed  Google Scholar 

  5. Davies RJ, Turner R, Crosby J and Stradling JR. Plasma insulin and lipid levels in untreated obstructive sleep apnoea and snoring; their comparison with matched controls and response to treatment. J Sleep Res3:180-185, 1994.

    Article  CAS  PubMed  Google Scholar 

  6. de la Eva RC, Baur LA, Donaghue KC and Waters KA. Metabolic correlates with obstructive sleep apnea in obese subjects. J Pediatr140:654-659, 2002.

    Article  PubMed  Google Scholar 

  7. Elmasry A, Janson C, Lindberg E, Gislason T, Tageldin MA and Boman G. The role of habitual snoring and obesity in the development of diabetes: a10-year follow-up study in a male population. J Intern Med248:13-20, 2000.

    Article  CAS  PubMed  Google Scholar 

  8. Enright PL, Newman AB, Wahl PW, Manolio TA, Haponik EF and Boyle PJ. Prevalence and correlates of snoring and observed apneas in 5,201 older adults. Sleep19:531-538, 1996.

    CAS  PubMed  Google Scholar 

  9. Flegal KM, Carroll MD, Kuczmarski RJ and Johnson CL. Overweight and obesity in the United States: prevalence and trends,1960-1994. Int J Obes Relat Metab Disord 22:39-47, 1998.

    Article  CAS  PubMed  Google Scholar 

  10. Grunstein RR, Stenlof K, Hedner J and Sjostrom L. Impact of obstructive sleep apnea and sleepiness on metabolic and cardiovascular risk factors in the Swedish Obese Subjects (SOS) Study. Int J Obes Relat Metab Disord19:410-418, 1995.

    CAS  PubMed  Google Scholar 

  11. Harsch IA, Schahin SP, Radespiel-Troger M, Weintz O, Jahreiss H, Fuchs FS, Wiest GH, Hahn EG, Lohmann T, Konturek PC and Ficker JH. Continuous positive airway pressure treatment rapidly improves insulin sensitivity in patients with obstructive sleep apnea syndrome. Am J Respir Crit Care Med169:156-162, 2004.

    Article  PubMed  Google Scholar 

  12. Iiyori N, Alonso LC, Li J, Sanders MH, Garcia-Ocana A, O’Doherty RM, Polotsky VY and O’Donnell CP. Intermittent Hypoxia Causes Insulin Resistance in Lean Mice Independent of Autonomic Activity. Am J Respir Crit Care Med,175:851-857 2007.

    Article  CAS  PubMed  Google Scholar 

  13. Ip MS, Lam B, Ng MM, Lam WK, Tsang KW and Lam KS. Obstructive sleep apnea is independently associated with insulin resistance. Am J Respir Crit Care Med165:670-676, 2002.

    PubMed  Google Scholar 

  14. Ip MS, Lam KS, Ho C, Tsang KW and Lam W. Serum leptin and vascular risk factors in obstructive sleep apnea. Chest118:580-586, 2000.

    Article  CAS  PubMed  Google Scholar 

  15. Jamerson KA, Julius S, Gudbrandsson T, Andersson O and Brant DO. Reflex sympathetic activation induces acute insulin resistance in the human forearm. Hypertension21:618-623, 1993.

    CAS  PubMed  Google Scholar 

  16. Jennum P, Schultz-Larsen K and Christensen N. Snoring, sympathetic activity and cardiovascular risk factors in a 70 year old population. Eur J Epidemiol9:477-482, 1993.

    Article  CAS  PubMed  Google Scholar 

  17. Levinson PD, McGarvey ST, Carlisle CC, Eveloff SE, Herbert PN and Millman RP. Adiposity and cardiovascular risk factors in men with obstructive sleep apnea. Chest 103:1336-1342, 1993.

    Article  CAS  PubMed  Google Scholar 

  18. Li J, Bosch-Marce M, Nanayakkara A, Savransky V, Fried SK, Semenza GL and Polotsky VY. Altered metabolic responses to intermittent hypoxia in mice with partial deficiency of hypoxia-inducible factor-1alpha. Physiol Genomics25:450-457, 2006.

    Article  CAS  PubMed  Google Scholar 

  19. Li J, Bosch-Marce M, Nanayakkara A, Savransky V, Fried SK, Semenza GL and Polotsky VY. Altered metabolic responses to intermittent hypoxia in mice with partial deficiency of hypoxia-inducible factor-1alpha. Physiol Genomics25:450-457, 2006.

    Article  CAS  PubMed  Google Scholar 

  20. Li J, Savransky V, Nanayakkara A, Smith PL, O’Donnell CP and Polotsky VY. Hyperlipidemia and lipid peroxidation are dependent on the severity of chronic intermittent hypoxia. J Appl Physiol102:557-563, 2007.

    Article  CAS  PubMed  Google Scholar 

  21. Li J, Thorne LN, Punjabi NM, Sun CK, Schwartz AR, Smith PL, Marino RL, Rodriguez A, Hubbard WC, O’Donnell CP and Polotsky VY. Intermittent hypoxia induces hyperlipidemia in lean mice. Circ Res97:698-706, 2005.

    Article  CAS  PubMed  Google Scholar 

  22. Manzella D, Parillo M, Razzino T, Gnasso P, Buonanno S, Gargiulo A, Caputi M and Paolisso G. Soluble leptin receptor and insulin resistance as determinant of sleep apnea. Int J Obes Relat Metab Disord26:370-375, 2002.

    Article  CAS  PubMed  Google Scholar 

  23. McCarty MF. Elevated sympathetic activity may promote insulin resistance syndrome by activating alpha-1 adrenergic receptors on adipocytes. Med Hypotheses62:830-838, 2004.

    Article  CAS  PubMed  Google Scholar 

  24. Mokdad AH, Ford ES, Bowman BA, Dietz WH, Vinicor F, Bales VS and Marks JS. Prevalence of obesity, diabetes, and obesity-related health risk factors, 2001. JAMA 289:76-79, 2003.

    Article  PubMed  Google Scholar 

  25. Narkiewicz K, van de Borne PJ, Cooley RL, Dyken ME and Somers VK. Sympathetic activity in obese subjects with and without obstructive sleep apnea. Circulation98:772-776, 1998.

    CAS  PubMed  Google Scholar 

  26. National Institutes of Health. Clinical guidelines on the identification, evaluation, and treatment of overweight and obesity in adults-the evidence report. Obes Res6(Suppl. 2):51S-209S, 1998.

    Google Scholar 

  27. Navegantes LC, Sjostrand M, Gudbjornsdottir S, Strindberg L, Elam M and Lonnroth P. Regulation and counterregulation of lipolysis in vivo: different roles of sympathetic activation and insulin. J Clin Endocrinol Metab88:5515-5520, 2003.

    Article  CAS  PubMed  Google Scholar 

  28. Polotsky VY, Li J, Punjabi NM, Rubin AE, Smith PL, Schwartz AR and O’Donnell CP. Intermittent hypoxia increases insulin resistance in genetically obese mice. J Physiol552:253-264, 2003.

    Article  CAS  PubMed  Google Scholar 

  29. Polotsky VY, Rubin AE, Balbir A, Dean T, Smith PL, Schwartz AR and O’Donnell CP. Intermittent hypoxia causes REM sleep deficits and decreases EEG delta power in NREM sleep in the C57BL/6 J mouse. Sleep Med7:7-16, 2006.

    Article  PubMed  Google Scholar 

  30. Punjabi NM, Ahmed MM, Polotsky VY, Beamer BA and O’Donnell CP. Sleepdisordered breathing, glucose intolerance, and insulin resistance. Respiration Physiology and Neurobiology2003.

    Google Scholar 

  31. Punjabi NM, Shahar E, Redline S, Gottlieb DJ, Givelber R and Resnick HE. Sleepdisordered breathing, glucose intolerance, and insulin resistance: the Sleep Heart Health Study. Am J Epidemiol160:521-530, 2004.

    Article  PubMed  Google Scholar 

  32. Punjabi NM, Sorkin JD, Katzel LI, Goldberg AP, Schwartz AR and Smith PL. Sleepdisordered breathing and insulin resistance in middle-aged and overweight men. Am J Respir Crit Care Med165:677-682, 2002.

    PubMed  Google Scholar 

  33. Saarelainen S, Lahtela J and Kallonen E. Effect of nasal CPAP treatment on insulin sensitivity and plasma leptin. J Sleep Res6:146-147, 1997.

    CAS  PubMed  Google Scholar 

  34. Saini J, Krieger J, Brandenberger G, Wittersheim G, Simon C and Follenius M. Continuous positive airway pressure treatment. Effects on growth hormone, insulin and glucose profiles in obstructive sleep apnea patients. Horm Metab Res25:375-381, 1993.

    Article  CAS  PubMed  Google Scholar 

  35. Somers VK, Dyken ME, Clary MP and Abboud FM. Sympathetic neural mechanisms in obstructive sleep apnea. J Clin Invest96:1897-1904, 1995.

    Article  CAS  PubMed  Google Scholar 

  36. Stoohs RA, Facchini F and Guilleminault C. Insulin resistance and sleep-disordered breathing in healthy humans. Am J Respir Crit Care Med154:170-174, 1996.

    CAS  PubMed  Google Scholar 

  37. Stoohs RA, Facchini FS, Philip P, Valencia-Flores M and Guilleminault C. Selected cardiovascular risk factors in patients with obstructive sleep apnea: effect of nasal continuous positive airway pressure (n-CPAP). Sleep16: S141-S142, 1993.

    Google Scholar 

  38. Strohl KP. Diabetes and sleep apnea. Sleep19: S225-S228, 1996.

    CAS  PubMed  Google Scholar 

  39. Strohl KP, Novak RD, Singer W, Cahan C, Boehm KD, Denko CW and Hoffstem VS. Insulin levels, blood pressure and sleep apnea. Sleep17:614-618, 1994.

    CAS  PubMed  Google Scholar 

  40. Stumvoll M, Goldstein BJ and van Haeften TW. Type 2 diabetes: principles of pathogenesis and therapy. Lancet365:1333-1346, 2005.

    Article  CAS  PubMed  Google Scholar 

  41. Tiihonen M, Partinen M and Narvanen S. The severity of obstructive sleep apnoea is associated with insulin resistance. J Sleep Res2:56-61, 1993.

    Article  PubMed  Google Scholar 

  42. Unger RH. Lipotoxic diseases. Annu Rev Med53:319-336, 2002.

    Article  CAS  PubMed  Google Scholar 

  43. Vgontzas AN, Papanicolaou DA, Bixler EO, Hopper K, Lotsikas A, Lin HM, Kales A and Chrousos GP. Sleep apnea and daytime sleepiness and fatigue: relation to visceral obesity, insulin resistance, and hypercytokinemia. J Clin Endocrinol Metab 85:1151-1158, 2000.

    Article  CAS  PubMed  Google Scholar 

  44. Wellen KE and Hotamisligil GS. Inflammation, stress, and diabetes. J Clin Invest115:1111-1119, 2005.

    CAS  PubMed  Google Scholar 

  45. Young T, Palta M, Dempsey J, Skatrud J, Weber S and Badr S. The occurrence of sleep-disordered breathing among middle-aged adults. N Engl J Med328:1230-1235, 1993.

    Article  CAS  PubMed  Google Scholar 

  46. Young T, Peppard PE and Gottlieb DJ. Epidemiology of obstructive sleep apnea: a population health perspective. Am J Respir Crit Care Med165:1217-1239, 2002.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this paper

Cite this paper

O’Donnell, C.P. (2007). Metabolic Consequences Of Intermittent Hypoxia. In: Roach, R.C., Wagner, P.D., Hackett, P.H. (eds) Hypoxia and the Circulation. Advances in Experimental Medicine and Biology, vol 618. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-75434-5_4

Download citation

Publish with us

Policies and ethics