Skip to main content

Innovations in Starch-Based Film Technology

  • Conference paper
Book cover Food Engineering: Integrated Approaches

Edible and biodegradable films can offer great potential to enhance food quality, safety and stability. The unique advantages of edible films and coatings may lead to new product developments, such as individual packaging of particulate foods, carriers for different additives, and nutrient supplements (Vermeiren et al., 1999). Composite films can be formulated to combine the advantages of each component. Proteins and polysaccharides provide the supporting matrix and are good barriers to gases, while lipids provide a good barrier to water vapor (Krochta and De Mulder Johnston, 1997). Over the last few years, there has been a renewed interest in biodegradable films and films made from renewable and natural polymers such as starch (Lawton, 1996; Vicentini et al., 2005). Several studies have been done to analyze the properties of starch-based films (Lawton and Fanta, 1994; Lourdin et al., 1995; Arvanitoyannis et al., 1998; Garcia et al., 1998a, 1998b, 2000a, 2000b, 2001; Mali et al., 2002; Vicentini et al., 2005). The use of a biopolymer such as starch can be an interesting solution because this polymer is quite cheap, abundant, biodegradable and edible. Amylose is responsible for the film-forming capacity of the starches.

Starches are polymers that naturally occur in a variety of botanical sources such as wheat, corn, potatoes and tapioca or cassava. It is a renewable resource widely available and can be obtained from different by-products of harvesting and raw material industrialization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alves, R.M.L., Grossmann, M.V.E., and Silva R.S.S.F., 1999, Pregelatinized Starches of Dioscorea alata - Functional Properties, Food Chem. 67:23–127.

    Article  Google Scholar 

  • AOAC, 1990, Official Methods of Analysis, 13th ed., Association of Official Analytical Chemists, Washington, DC.

    Google Scholar 

  • Arvanitoyannis, I., Billiaderis, C.G., Ogawa, H., and Kawasaki N., 1998, Biodegradable Films Made from Low-Density Polyethylene (LDPE), Rice Starch and Potato Starch for Food Packaging Applications: Part 1. Carbohydr. Polym. 36:89–104.

    Article  CAS  Google Scholar 

  • Arvanitoyannis, I., Kalichevsky, M., Blanshard, J., and Psomiadou E., 1994, Study of Diffusion and Permeation of Gases in Undrawn and Uniaxially Drawn Films Made from Potato and Rice Starch Conditioned at Different Relative Humidities, Carbohydr. Polym. 24:1–15.

    Article  CAS  Google Scholar 

  • Arvanitoyannis, I., Psomiadou, E., Nakayama, A., Aiba, S., and Yamamoto N., 1997, Edible Films Made From Gelatin, Soluble Starch And Polyols, Part 3, Food Chem. 60:593.

    Article  CAS  Google Scholar 

  • ASTM, 1996, Standard Test Methods for Water Vapor Transmission of Material, E96–95, in: Annual Book of ASTM.: American Society for Testing and Materials, Philadelphia.

    Google Scholar 

  • ASTM D4092, 1996, Standard Terminology: Plastics: Dynamic Mechanical Properties, American Society for Testing and Materials, Philadelphia.

    Google Scholar 

  • ASTM E96–00, 2000, Standard Test Method for Water Vapor Transmission of Materials, American Society for Testing and Materials, Philadelphia.

    Google Scholar 

  • Barrett, E.P., Joyner, L.G., and Hallena P.P., 1951, The Determination of Pore Volume and Area Distribution in Porous Substances, Computation from Nitrogen Isotherms, J. Am. Chem. Soc. 73:373–380.

    Article  CAS  Google Scholar 

  • Bello-Pérez, L.A., Agama-Acevedo, E., Sáyago, S.G., and Figueroa J.D.C., 2000. Some Structural, Physcochemical and Functional Studies of Banana Starches Isolated from Two Varieties Growing in Guerrero, México, Starch/Stärke. 52:68.

    Article  Google Scholar 

  • Cunningham, P., Ogale, A., Dawson, P., and Acton J., 2000, Tensile Properties of Soy Protein Isolate Films Produced by a Thermal Compaction Technique, J. Food Sci. 65(4):668–671.

    Article  CAS  Google Scholar 

  • Cuq, B., Gontard, N., and Guilbert S., 1998, Proteins as Agricultural Polymers for Packaging Production. Cereal Chem. 75:1, 1–9.

    Article  CAS  Google Scholar 

  • Donhowe, I.G., and Fennema O., 1993a, The Effects of Plasticizers on Crystallinity, Permeability and Mechanical Properties of Methylcellulose Films, J. Food Process. Preserv. 17:247–258.

    Article  CAS  Google Scholar 

  • Donhowe, I.G., and Fennema O., 1993b, The Effects of Solution Composition and Drying Temperature on Crystallinity, Permeability and Mechanical Properties of Methylcellulose Films, J. Food Process. Preserv. 17:231–246.

    Article  CAS  Google Scholar 

  • FAO, 2004, Proceedings of the Validation Forum on the Global Cassava Development Strategy, Volume 6, Global Cassava Market Study Business Opportunities for the Use of Cassava, International Fund for Agricultural Development, Rome.

    Google Scholar 

  • Ferreira F.A.B., 2005, Estabilidade de Filmes de Amido de Inhame Plastificados com Monoglicerídio e com Glicerol em Diferentes Condições Ambientais, Dissertação de Mestrado, Universidade Estadual de Londrina, Londrina.

    Google Scholar 

  • García, M.A., Martino, M.N., and Zaritzky N.E., 1998a, Plasticizer Effect on Starch-based Coatings Applied to Strawberries (Fragaria × Ananassa), J. Agric. Food Chem. 46:3758–3767.

    Article  Google Scholar 

  • García, M.A., Martino, M.N., and Zaritzky N.E., 1998b, Starch-based Coatings: Effect on Refrigerated Strawberry (Fragaria × Ananassa) Quality, J. Sci. Food Agric. 76:411–420.

    Article  Google Scholar 

  • García, M.A., Martino, M.N., and Zaritzky N.E., 2000a, Lipid Addition to Improve Barrier Properties of Edible Starch-based Films and Coatings, J. Food Sci. 65(6):941–947.

    Article  Google Scholar 

  • García, M.A., Martino, M.N., and Zaritzky N. E., 2000b, Microstructural Characterization of Plasticized Starch-Based Films, Starch/Stärke 52(4):118–124.

    Article  Google Scholar 

  • García, M.A., Martino, M.N., and Zaritzky N. E., 2001, Composite Starch-Based Coatings Applied to Strawberries (Fragaria × ananassa), Nahrung/Food 45(4):267–272.

    Article  Google Scholar 

  • García, M.A., Pinotti, A., Martino, M., and Zaritzky N., 2004, Characterization of Composite Hydrocolloid Films, Carbohydr. Polym. 56(3):339–345.

    Article  CAS  Google Scholar 

  • González-Soto, R.A., Sánchez-Hernández, L., Solorza-Feria, J., Nuñez-Santiago, C., Flores-Huicochea, E., and Bello-Pérez L. A., 2006, Resistant Starch Production from Non-Conventional Starch Sources by Extrusion, Food Sci. Technol. Int. 12(1):5.

    Article  CAS  Google Scholar 

  • Hullemann, S.H.D., Kalisvaart, M. G, Janssen, F.H.P., Feil, H., and Vliegenthart J.F.G., 1999, Origins of B-Type Crystallinity in Glycerol-Plasticised, Compression Moulded Potato Starches, Carbohydr. Polym. 39:351–360.

    Article  Google Scholar 

  • Krochta, J.M., and De Mulder-Johnston C., 1997, Edible and Biodegradable Polymer Films: Challenges and Opportunities, Food Technol. 51(2):61–77.

    Google Scholar 

  • Larotonda, F.D.S., Matsui, K.N., Sobral, P.J.A., and Laurindo J.B., 2005, Hygroscopicity and Water Vapor Permeability oof Kraft Paper Impregnated with Starch Acetate, J. Food Eng. 71:394–402.

    Article  Google Scholar 

  • Larotonda, F.D.S., Matsui, K.S., Paes, S.S., and Laurindo J.B., 2003, Impregnation of Kraft Paper with Cassava-Starch Acetate-Analysis of the Tensile Strength, Water Absorption and Water Vapor Permeability, Starch/Starke 55:504–510.

    Article  CAS  Google Scholar 

  • Lawton J.W., 1996, Effect of Starch Type on the Properties of Starch Containing Films. Carbohydrate Polymers, 29: 203–208.

    Article  CAS  Google Scholar 

  • Lawton, J.W., and Fanta G.F., 1994, Glycerol—Plasticized Films Prepared from Starch Poly(Vinyl Alcohol) Mixtures: Effect of Poly (Ethylene—Co-Acrylic Acid), Carbohydr. Polym. 23:261–270.

    Article  Google Scholar 

  • Lii, C.Y., Chang, S.M., and Young Y.L., 1982, Investigation of the Physical and Chemical Properties of Banana Starches, J. Food Sci., 47:1493.

    Article  CAS  Google Scholar 

  • Lourdin, D., Della Valle, G., and Colonna P., 1995, Influence of Amylose Content on Starch-Films and Foams. Carbohydrate Polymers, 27:275–280.

    Article  Google Scholar 

  • Mali, S., Grossmann, M.V., García, M.A., Martino, M.N., and Zaritzky N.E., 2002, Microstructural Characterization of Yam Starch Films, Carbohydr. Polym. 50(4):379–386.

    Article  CAS  Google Scholar 

  • Mali, S., Karam, L.B., Ramos, L.P., and Grossmann M.V.E., 2004, Relationships Among the Composition and Physicochemical Properties of Starches with the Characteristics of Their Films, J. Agric. Food Chem. 52(25):7720–7725.

    Article  CAS  Google Scholar 

  • Manzocco, L., Nicoli, M.C., and Labuza T., 2003, Study oof Bread Staling by X-Ray Diffraction Analysis, Italian Food Technol. XII(31):17.

    Google Scholar 

  • McHugh, T.H., and Krochta J.M., 1994, Milk-Protein-Based Edible Films and Coatings, Food Technol. 48(1):97–103.

    CAS  Google Scholar 

  • Monterrey-Quintero, E.S., and Sobral P.J., 1999, Caracterização de Propriedades Mecânicas e Óticas de Biofilmes a Base de Proteínas, Ciência e Tecnologia de Alimentos, 19(2):294–301.

    Google Scholar 

  • Narayan, R., Bloembergen, S., and Lathia A., 1999, Method of Preparing Biodegradable Modified-Starch Moldable Products and films, US Patent 5, 869, 647.

    Google Scholar 

  • Petersson, M., and Stading M., 2005, Water Vapor Permeability and Mechanical Properties of Mixed Starch-Monoglyceride Films and Effect of Film Forming Conditions, Food Hydrocolloid. 19:123–132.

    Article  CAS  Google Scholar 

  • Rindlav-Westling, A., Stading, M., Hermansson, A.M., and Gatenholm P., 1998, Structure, Mechanical and Barrier Properties of Amylose and Amylopectin Films, Carbohydr. Polym. 36:217–224.

    Article  CAS  Google Scholar 

  • Rockland L.B., 1960, Satured Salt Solutions for Static Control of Relative Humidity, Anal. Chem. 32:1375–1376.

    Article  CAS  Google Scholar 

  • Romero-Bastida, C.A., Bello-Pérez, L.A., García, M.A., Martino, M.N., Solorza-Feria, J., and Zaritzky N.E., 2005, Physicochemical and Microstructural Characterization of Films Prepared by Thermal and Cold Gelatinization from Non-Conventional Sources of Starches, Carbohydr. Polym. 60(22):235.

    Article  CAS  Google Scholar 

  • Sobral, P.J.A., and Ocuno D., 2000, Permeabilidade ao Vapor de Água de Biofilmes a` Base de Proteínas MiofiBrilares de Carne, Brazilian J. Food Technol. 3:11–16.

    Google Scholar 

  • van Soest, J.J.G., Hulleman, S.H.D., de Wit, D., and Vliegenthart J.F.G., 1996, Crystallinity in Starch Bioplastics, Ind. Crop. Prod. 5:11–22.

    Article  Google Scholar 

  • van Soest, J.J.G., and Vliegenthart J.F.G., 1997, Crystallinity in Starch Plastics: Consequences for Material Properties, Trends Biotechnol. 15(6):208–213.

    Article  Google Scholar 

  • Vermeiren, L., Devlieghere, F., van Beest, M., de Kruijf, N., and Debevere J., 1999, Developments in the Active Packaging of Foods, Trends Food Sci. Technol. 10:77–86.

    Article  CAS  Google Scholar 

  • Vicentini, N.M., Dupuy, N., Leitzelman, M., Cereda, M.P., and Sobral P.J.A., 2005, Prediction of Cassava Starch Edible Film Properties by Chemometric Analysis of Infrared Spectra, Spectroscopy Lett. 38(6):749–767,.

    Article  CAS  Google Scholar 

  • Wurzburg O.B., 1986, Cross-Linking Starches, in: Modified Starches: Properties and uses, O.B. Wurzburg (ed.), CRC Press, Boca Raton, p. 41–53.

    Google Scholar 

  • Zamudio-Flores, P.B., Vargas-Torres, A., Pérez-Gónzalez, J., Bozquez-Molina, E., and Bello-Pérez L.A., 2006, Films Prepared with Oxidized Banana Starch: Mechanical and Barrier Properties, (In press.).

    Google Scholar 

  • Zhang, P., Whistler, R.L., BeMiller, J.N., and Hamaker B.R., 2005, Banana Starch: Production, Physicochemical Properties, and Digestibility—A Review. Carbohyd. Polym. 59:443–458.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this paper

Cite this paper

García, M. et al. (2008). Innovations in Starch-Based Film Technology. In: Gutiérrez-López, G.F., Barbosa-Cánovas, G.V., Welti-Chanes, J., Parada-Arias, E. (eds) Food Engineering: Integrated Approaches. Food Engineering series. Springer, New York, NY. https://doi.org/10.1007/978-0-387-75430-7_32

Download citation

Publish with us

Policies and ethics