Advertisement

Innovations in Starch-Based Film Technology

  • M. García
  • A. M. Rojas
  • J. B. Laurindo
  • C. A. Romero-Bastida
  • M. V. E. Grossmann
  • M. N. Martino
  • S. Flores
  • P. B. Zamudio-Flores
  • S. Mali
  • N. E. Zaritzky
  • P. Sobral
  • L. Famá
  • L. A. Bello-Pérez
  • F. Yamashita
  • A. P. del Beleia
Part of the Food Engineering series book series (FSES)

Edible and biodegradable films can offer great potential to enhance food quality, safety and stability. The unique advantages of edible films and coatings may lead to new product developments, such as individual packaging of particulate foods, carriers for different additives, and nutrient supplements (Vermeiren et al., 1999). Composite films can be formulated to combine the advantages of each component. Proteins and polysaccharides provide the supporting matrix and are good barriers to gases, while lipids provide a good barrier to water vapor (Krochta and De Mulder Johnston, 1997). Over the last few years, there has been a renewed interest in biodegradable films and films made from renewable and natural polymers such as starch (Lawton, 1996; Vicentini et al., 2005). Several studies have been done to analyze the properties of starch-based films (Lawton and Fanta, 1994; Lourdin et al., 1995; Arvanitoyannis et al., 1998; Garcia et al., 1998a, 1998b, 2000a, 2000b, 2001; Mali et al., 2002; Vicentini et al., 2005). The use of a biopolymer such as starch can be an interesting solution because this polymer is quite cheap, abundant, biodegradable and edible. Amylose is responsible for the film-forming capacity of the starches.

Starches are polymers that naturally occur in a variety of botanical sources such as wheat, corn, potatoes and tapioca or cassava. It is a renewable resource widely available and can be obtained from different by-products of harvesting and raw material industrialization.

Keywords

Water Vapor Permeability Edible Film Water Vapor Transmission Rate Potassium Sorbate Kraft Paper 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alves, R.M.L., Grossmann, M.V.E., and Silva R.S.S.F., 1999, Pregelatinized Starches of Dioscorea alata - Functional Properties, Food Chem. 67:23–127.CrossRefGoogle Scholar
  2. AOAC, 1990, Official Methods of Analysis, 13th ed., Association of Official Analytical Chemists, Washington, DC.Google Scholar
  3. Arvanitoyannis, I., Billiaderis, C.G., Ogawa, H., and Kawasaki N., 1998, Biodegradable Films Made from Low-Density Polyethylene (LDPE), Rice Starch and Potato Starch for Food Packaging Applications: Part 1. Carbohydr. Polym. 36:89–104.CrossRefGoogle Scholar
  4. Arvanitoyannis, I., Kalichevsky, M., Blanshard, J., and Psomiadou E., 1994, Study of Diffusion and Permeation of Gases in Undrawn and Uniaxially Drawn Films Made from Potato and Rice Starch Conditioned at Different Relative Humidities, Carbohydr. Polym. 24:1–15.CrossRefGoogle Scholar
  5. Arvanitoyannis, I., Psomiadou, E., Nakayama, A., Aiba, S., and Yamamoto N., 1997, Edible Films Made From Gelatin, Soluble Starch And Polyols, Part 3, Food Chem. 60:593.CrossRefGoogle Scholar
  6. ASTM, 1996, Standard Test Methods for Water Vapor Transmission of Material, E96–95, in: Annual Book of ASTM.: American Society for Testing and Materials, Philadelphia.Google Scholar
  7. ASTM D4092, 1996, Standard Terminology: Plastics: Dynamic Mechanical Properties, American Society for Testing and Materials, Philadelphia.Google Scholar
  8. ASTM E96–00, 2000, Standard Test Method for Water Vapor Transmission of Materials, American Society for Testing and Materials, Philadelphia.Google Scholar
  9. Barrett, E.P., Joyner, L.G., and Hallena P.P., 1951, The Determination of Pore Volume and Area Distribution in Porous Substances, Computation from Nitrogen Isotherms, J. Am. Chem. Soc. 73:373–380.CrossRefGoogle Scholar
  10. Bello-Pérez, L.A., Agama-Acevedo, E., Sáyago, S.G., and Figueroa J.D.C., 2000. Some Structural, Physcochemical and Functional Studies of Banana Starches Isolated from Two Varieties Growing in Guerrero, México, Starch/Stärke. 52:68.CrossRefGoogle Scholar
  11. Cunningham, P., Ogale, A., Dawson, P., and Acton J., 2000, Tensile Properties of Soy Protein Isolate Films Produced by a Thermal Compaction Technique, J. Food Sci. 65(4):668–671.CrossRefGoogle Scholar
  12. Cuq, B., Gontard, N., and Guilbert S., 1998, Proteins as Agricultural Polymers for Packaging Production. Cereal Chem. 75:1, 1–9.CrossRefGoogle Scholar
  13. Donhowe, I.G., and Fennema O., 1993a, The Effects of Plasticizers on Crystallinity, Permeability and Mechanical Properties of Methylcellulose Films, J. Food Process. Preserv. 17:247–258.CrossRefGoogle Scholar
  14. Donhowe, I.G., and Fennema O., 1993b, The Effects of Solution Composition and Drying Temperature on Crystallinity, Permeability and Mechanical Properties of Methylcellulose Films, J. Food Process. Preserv. 17:231–246.CrossRefGoogle Scholar
  15. FAO, 2004, Proceedings of the Validation Forum on the Global Cassava Development Strategy, Volume 6, Global Cassava Market Study Business Opportunities for the Use of Cassava, International Fund for Agricultural Development, Rome.Google Scholar
  16. Ferreira F.A.B., 2005, Estabilidade de Filmes de Amido de Inhame Plastificados com Monoglicerídio e com Glicerol em Diferentes Condições Ambientais, Dissertação de Mestrado, Universidade Estadual de Londrina, Londrina.Google Scholar
  17. García, M.A., Martino, M.N., and Zaritzky N.E., 1998a, Plasticizer Effect on Starch-based Coatings Applied to Strawberries (Fragaria × Ananassa), J. Agric. Food Chem. 46:3758–3767.CrossRefGoogle Scholar
  18. García, M.A., Martino, M.N., and Zaritzky N.E., 1998b, Starch-based Coatings: Effect on Refrigerated Strawberry (Fragaria × Ananassa) Quality, J. Sci. Food Agric. 76:411–420.CrossRefGoogle Scholar
  19. García, M.A., Martino, M.N., and Zaritzky N.E., 2000a, Lipid Addition to Improve Barrier Properties of Edible Starch-based Films and Coatings, J. Food Sci. 65(6):941–947.CrossRefGoogle Scholar
  20. García, M.A., Martino, M.N., and Zaritzky N. E., 2000b, Microstructural Characterization of Plasticized Starch-Based Films, Starch/Stärke 52(4):118–124.CrossRefGoogle Scholar
  21. García, M.A., Martino, M.N., and Zaritzky N. E., 2001, Composite Starch-Based Coatings Applied to Strawberries (Fragaria × ananassa), Nahrung/Food 45(4):267–272.CrossRefGoogle Scholar
  22. García, M.A., Pinotti, A., Martino, M., and Zaritzky N., 2004, Characterization of Composite Hydrocolloid Films, Carbohydr. Polym. 56(3):339–345.CrossRefGoogle Scholar
  23. González-Soto, R.A., Sánchez-Hernández, L., Solorza-Feria, J., Nuñez-Santiago, C., Flores-Huicochea, E., and Bello-Pérez L. A., 2006, Resistant Starch Production from Non-Conventional Starch Sources by Extrusion, Food Sci. Technol. Int. 12(1):5.CrossRefGoogle Scholar
  24. Hullemann, S.H.D., Kalisvaart, M. G, Janssen, F.H.P., Feil, H., and Vliegenthart J.F.G., 1999, Origins of B-Type Crystallinity in Glycerol-Plasticised, Compression Moulded Potato Starches, Carbohydr. Polym. 39:351–360.CrossRefGoogle Scholar
  25. Krochta, J.M., and De Mulder-Johnston C., 1997, Edible and Biodegradable Polymer Films: Challenges and Opportunities, Food Technol. 51(2):61–77.Google Scholar
  26. Larotonda, F.D.S., Matsui, K.N., Sobral, P.J.A., and Laurindo J.B., 2005, Hygroscopicity and Water Vapor Permeability oof Kraft Paper Impregnated with Starch Acetate, J. Food Eng. 71:394–402.CrossRefGoogle Scholar
  27. Larotonda, F.D.S., Matsui, K.S., Paes, S.S., and Laurindo J.B., 2003, Impregnation of Kraft Paper with Cassava-Starch Acetate-Analysis of the Tensile Strength, Water Absorption and Water Vapor Permeability, Starch/Starke 55:504–510.CrossRefGoogle Scholar
  28. Lawton J.W., 1996, Effect of Starch Type on the Properties of Starch Containing Films. Carbohydrate Polymers, 29: 203–208.CrossRefGoogle Scholar
  29. Lawton, J.W., and Fanta G.F., 1994, Glycerol—Plasticized Films Prepared from Starch Poly(Vinyl Alcohol) Mixtures: Effect of Poly (Ethylene—Co-Acrylic Acid), Carbohydr. Polym. 23:261–270.CrossRefGoogle Scholar
  30. Lii, C.Y., Chang, S.M., and Young Y.L., 1982, Investigation of the Physical and Chemical Properties of Banana Starches, J. Food Sci., 47:1493.CrossRefGoogle Scholar
  31. Lourdin, D., Della Valle, G., and Colonna P., 1995, Influence of Amylose Content on Starch-Films and Foams. Carbohydrate Polymers, 27:275–280.CrossRefGoogle Scholar
  32. Mali, S., Grossmann, M.V., García, M.A., Martino, M.N., and Zaritzky N.E., 2002, Microstructural Characterization of Yam Starch Films, Carbohydr. Polym. 50(4):379–386.CrossRefGoogle Scholar
  33. Mali, S., Karam, L.B., Ramos, L.P., and Grossmann M.V.E., 2004, Relationships Among the Composition and Physicochemical Properties of Starches with the Characteristics of Their Films, J. Agric. Food Chem. 52(25):7720–7725.CrossRefGoogle Scholar
  34. Manzocco, L., Nicoli, M.C., and Labuza T., 2003, Study oof Bread Staling by X-Ray Diffraction Analysis, Italian Food Technol. XII(31):17.Google Scholar
  35. McHugh, T.H., and Krochta J.M., 1994, Milk-Protein-Based Edible Films and Coatings, Food Technol. 48(1):97–103.Google Scholar
  36. Monterrey-Quintero, E.S., and Sobral P.J., 1999, Caracterização de Propriedades Mecânicas e Óticas de Biofilmes a Base de Proteínas, Ciência e Tecnologia de Alimentos, 19(2):294–301.Google Scholar
  37. Narayan, R., Bloembergen, S., and Lathia A., 1999, Method of Preparing Biodegradable Modified-Starch Moldable Products and films, US Patent 5, 869, 647.Google Scholar
  38. Petersson, M., and Stading M., 2005, Water Vapor Permeability and Mechanical Properties of Mixed Starch-Monoglyceride Films and Effect of Film Forming Conditions, Food Hydrocolloid. 19:123–132.CrossRefGoogle Scholar
  39. Rindlav-Westling, A., Stading, M., Hermansson, A.M., and Gatenholm P., 1998, Structure, Mechanical and Barrier Properties of Amylose and Amylopectin Films, Carbohydr. Polym. 36:217–224.CrossRefGoogle Scholar
  40. Rockland L.B., 1960, Satured Salt Solutions for Static Control of Relative Humidity, Anal. Chem. 32:1375–1376.CrossRefGoogle Scholar
  41. Romero-Bastida, C.A., Bello-Pérez, L.A., García, M.A., Martino, M.N., Solorza-Feria, J., and Zaritzky N.E., 2005, Physicochemical and Microstructural Characterization of Films Prepared by Thermal and Cold Gelatinization from Non-Conventional Sources of Starches, Carbohydr. Polym. 60(22):235.CrossRefGoogle Scholar
  42. Sobral, P.J.A., and Ocuno D., 2000, Permeabilidade ao Vapor de Água de Biofilmes a` Base de Proteínas MiofiBrilares de Carne, Brazilian J. Food Technol. 3:11–16.Google Scholar
  43. van Soest, J.J.G., Hulleman, S.H.D., de Wit, D., and Vliegenthart J.F.G., 1996, Crystallinity in Starch Bioplastics, Ind. Crop. Prod. 5:11–22.CrossRefGoogle Scholar
  44. van Soest, J.J.G., and Vliegenthart J.F.G., 1997, Crystallinity in Starch Plastics: Consequences for Material Properties, Trends Biotechnol. 15(6):208–213.CrossRefGoogle Scholar
  45. Vermeiren, L., Devlieghere, F., van Beest, M., de Kruijf, N., and Debevere J., 1999, Developments in the Active Packaging of Foods, Trends Food Sci. Technol. 10:77–86.CrossRefGoogle Scholar
  46. Vicentini, N.M., Dupuy, N., Leitzelman, M., Cereda, M.P., and Sobral P.J.A., 2005, Prediction of Cassava Starch Edible Film Properties by Chemometric Analysis of Infrared Spectra, Spectroscopy Lett. 38(6):749–767,.CrossRefGoogle Scholar
  47. Wurzburg O.B., 1986, Cross-Linking Starches, in: Modified Starches: Properties and uses, O.B. Wurzburg (ed.), CRC Press, Boca Raton, p. 41–53.Google Scholar
  48. Zamudio-Flores, P.B., Vargas-Torres, A., Pérez-Gónzalez, J., Bozquez-Molina, E., and Bello-Pérez L.A., 2006, Films Prepared with Oxidized Banana Starch: Mechanical and Barrier Properties, (In press.).Google Scholar
  49. Zhang, P., Whistler, R.L., BeMiller, J.N., and Hamaker B.R., 2005, Banana Starch: Production, Physicochemical Properties, and Digestibility—A Review. Carbohyd. Polym. 59:443–458.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • M. García
    • 1
  • A. M. Rojas
    • 2
  • J. B. Laurindo
    • 3
  • C. A. Romero-Bastida
    • 4
  • M. V. E. Grossmann
    • 5
  • M. N. Martino
    • 1
  • S. Flores
    • 2
  • P. B. Zamudio-Flores
    • 4
  • S. Mali
    • 5
  • N. E. Zaritzky
    • 1
  • P. Sobral
    • 6
  • L. Famá
    • 2
  • L. A. Bello-Pérez
    • 4
  • F. Yamashita
    • 5
  • A. P. del Beleia
    • 5
  1. 1.Centro de Investigación y Desarrollo en Criotecnología de AlimentosUniversidad NacionalArgentina
  2. 2.Departamento de IndustriasUniversidad de Buenos AiresArgentina
  3. 3.Departamento de Engenharia Química e Engenharia de AlimentosUniversidade Federal de Santa CatarinaBrazil
  4. 4.Departamento de Desarrollo TecnológicoCEPROBI-Instituto Politécnico NacionalMéxico
  5. 5.Departamento de Ciência e Tecnologia de AlimentosUniversidade Estadual de LondrinaBrazil
  6. 6.Departamento de Engenharia de AlimentosUniversidade de São PauloBrazil

Personalised recommendations