Skip to main content

Whey Proteins: Bioengineering and Health

  • Conference paper
Food Engineering: Integrated Approaches

Whey, obtained mainly from cheese production, has been considered for a long time as a low added value byproduct. It is a highly polluting material with a biological oxygen demand (BOD) of 30,000 to 50,000 mg l−1, and it has been used as a low cost raw material for the production of several commodities (Marwaha and Kennedy, 1988; Garcia-Garibay et al., 1993). Whey production worldwide has for years represented a challenge to find interesting ways for its utilization. During the last 10 or 20 years, it has been difficult to economically dispose of whey, even in developed countries, due to the increase in cheese production and the installation of larger cheese factories. Although whey utilization has been the subject of much research, very few processes have led to economically attractive ways for its utilization. The most successful processes for its utilization are those that have led to the elaboration of products with a high added value. For instance, whey proteins have high nutritional value and very good functional properties, leading to the interest in developing ultrafiltration techniques in order to recover such proteins without losing their functional properties (Trejo-Vázquez et al., 1995).

The utilization of whey proteins as food ingredients in many products due to their unique nutritional and functional properties and, even more, due to their bioactive characteristics, has been the driving force for research on the development of new techniques for their concentration, recovery and fractionation.

In the present chapter, a review of the most important characteristics of whey proteins, together with the techniques for their separation, is presented. Table 31.1 shows some important biochemical characteristics of major or important whey proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anema, S.G., Stockmann, R., and Lowe E.K., 2005, Denaturation of B-Lactoglobulin in Pressure-Treated Skim Milk, J. Agric. Food Chem. 53:7783–7791.

    Article  CAS  Google Scholar 

  • Aouzelleg, A., and Bull L., 2004, Differential Scanning Calorimetry Study of Pressure/Temperature Processed β-Lactoglobulin: The Effect of Dextran Sulphate, Food Res. Int. 37:933–940.

    Article  CAS  Google Scholar 

  • Aouzelleg, A., Bull, L., Price, N.C., and Kelly S.M., 2004, Molecular Studies of Pressure/Temperature-Induced Structural Changes in Bovine B-Lactoglobulin, J. Sci. Food Agric. 84:398–404.

    Article  CAS  Google Scholar 

  • Bahna S.L., 1993, Food Intolerance. Milk Allergy, in: Encyclopedia of Food Science Food Technology and Nutrition, vol. 3, R. Macrae, R.K. Robinson and M.J. Sadler (eds.), Academic Press, London, pp. 2001–2004.

    Google Scholar 

  • Bos, C., Gaudichon, C., and Tomé D., 2000, Nutritional and Physiological Criteria in the Assessment of Milk Protein Quality for Humans, J. Am. College Nutr. 19:191–205.

    Google Scholar 

  • Bramaud, C., Aimar, P., and Daufin G., 1997, Precipitation of α-Lactalbumin Under Gentle Heat Treatment, Biotechnol. Bioeng. 56:391–397.

    Article  CAS  Google Scholar 

  • Cheang, B., and Zydney A.L., 2003, Separation of α-Lactalbumin and β–Lactoglobulin Using Membrane Ultrafiltration, Biotechnol. Bioeng. 83:201–209.

    Article  CAS  Google Scholar 

  • Chiu, C.K., and Etzel M.R., 1997, Fractionation of Lactoperoxidase and Lactoferrin from Bovine Whey Using a Cation Exchange Membrane, J. Food Sci. 62:996–1000.

    Article  CAS  Google Scholar 

  • Clare, D.A., and Swaisgood H.E., 2000, Bioactive Milk Peptides: A Prospectus, J. Dairy Sci. 83:1187–1195.

    Article  CAS  Google Scholar 

  • de Wit J.N., 1989, Functional Properties of Whey Proteins, in: Developments in Dairy Chemistry—4, P.F. Fox, Elsevier Applied Science, London, pp. 285–321.

    Google Scholar 

  • Fajardo-Lira, C.E., and Nielsen S.S., 1998, Effect of Psychrotrophic Microorganisms on the Plasmin System in Milk, J. Dairy Sci. 81:901–908.

    CAS  Google Scholar 

  • Farrel, H.M., Jiménez-Flores, R., Bleck, G.T., Brown, E.M., Butler, J.E., Creamer, L.K., Hicks, C.L., Hollar, C.M., Ng, K.F., and Swaisgood H.E., 2004, Nomenclature of The Proteins of Cow’s Milk—Sixth Revision, J. Dairy Sci. 87:1641–1674.

    Article  Google Scholar 

  • Foegeding, E.A., and Luck P.J., 2003, Whey Protein Products, in: Encyclopedia of Dairy Science, vol. 3. H. Roginski, J.E. Fuquay and P.F. Fox (eds.), Academic Press, Amsterdam, pp. 1957–1967.

    Google Scholar 

  • Fox P.F., 2003, Milk Proteins: General and Historic Aspects, in: Advanced Dairy Chemistry, Vol.1. Proteins. P.F. Fox and P.L.H. McSweeney (eds.), Kluwer Academic, New York, pp. 1– 48.

    Google Scholar 

  • Fuda, E., Bhatia, D., Pyle, D.L., and Jáuregui P., 2005, Selective Separation of B-Lactoglobulin from Sweet Whey Using Cgas Generated from Cationic Surfactant CTAB, Biotechnol. Bioeng. 90:532–542.

    Article  CAS  Google Scholar 

  • Fuda, E., Juaregui, P., and Pyle D.L. 2004, Recovery of Lactoferrin and Lactoperoxidase from Sweet Whey Using Colloidal Gas Aphrons (Cgas) Generated from an Anionic Surfactant, AOT, Biotechnol. Prog. 20:514–525.

    Article  CAS  Google Scholar 

  • Garcia-Garibay, M., Revah, S., and Gómez-Ruiz L., 1993, Productos Lácteos, in: Biotecnología Alimentaria, M. García Garibay, R. Quintero, and A. López-Munguía (eds.), Editorial Limusa, S.A., México D.F., pp. 153–223.

    Google Scholar 

  • Gésan-Guizion, G., Daufin, G., Timmer, M., Allersma, D., and van der Horst C., 1999, Process Steps for the Preparation of Purified Fractions of α-Lactalbumin and β–Lactoglobulin from Whey Protein Concentrates, J. Dairy Res. 66:225–236.

    Article  Google Scholar 

  • Hambræus, L., and Lönnerdal B., 2003, Nutritional Aspects of Milk Proteins, in: Advanced Dairy Chemistry, vol. 1. Proteins. P.F. Fox and P.L.H. McSweeney (eds.), Kluwer Academic, New York, pp. 605–645.

    Google Scholar 

  • Hobman P.G., 1992, Ultrafiltration and Manufacture of Whey Protein Concentrates, in: Whey and Lactose Processing. J.G. Zadow (ed.), Elsevier Science Pub., London, pp. 195–230.

    Google Scholar 

  • Huppertz, T., Kelly, A.L., and Fox P.F., 2002, Effect of High Pressure on Constituents and Properties of Milk, Int. Dairy J. 12:561–572.

    Article  CAS  Google Scholar 

  • Jegouic, M., Grinberg, V., Guingant, A. and Haertlé T., 1996, Thio-Induced Oligomerization of α-Lactalbumin at High Pressure, J. Protein Chem. 15:501–509.

    Article  CAS  Google Scholar 

  • Jegouic, M., Grinberg, V., Guingant, A., and Haertlé T., 1997, Baric Oligomerization of α-Lactalbumin/ B-Lactoglobulin Mixtures, J. Agric. Food Chem. 45:19–22.

    Article  CAS  Google Scholar 

  • Korhonen, H., and Marnila P., 2003, Lactoferrin. Milk Proteins, in: Encyclopedia of Dairy Science, vol. 3. H. Roginski, J.E. Fuquay and P.F. Fox (eds.), Academic Press, Amsterdam, pp. 1946–1950.

    Google Scholar 

  • Léonil, J., and Maubois J.L. 2002, Milk-Derived Bioactive Peptides and Proteins: Future Perspectives, Proceedings of the 26th International Dairy Congress. IDF, Paris.

    Google Scholar 

  • Liu, X., Powers, J.R., Swanson, B.G., Hill, H.H., and Clark S., 2005, Modification of Whey Protein Concentrate Hydrophobicity by High Hydrostatic Pressure, Innovative Food Sci. Emerging Technol. 6:310–317.

    Article  CAS  Google Scholar 

  • López-Fandiño, R., Carrascosa, A.V., and Olano A., 1996, The Effects of High Pressure on Whey Protein Denaturation and Cheese-Making Properties of Raw Milk, J. Dairy Sci. 79:929–936.

    Article  Google Scholar 

  • López-Fandiño, R., and Olano A., 1998, Effects of High Pressures Combined with Moderate Temperatures on the Rennet Coagulation Properties of Milk, Int. Dairy J. 8:623–627.

    Article  Google Scholar 

  • Mangino M.E., 1992, Properties of Whey Protein Concentrates, in: Whey and Lactose Processing. J.G. Zadow (ed.), Elsevier Science Pub., London, pp. 231–270.

    Google Scholar 

  • Marwaha, S., and Kennedy J., 1988, Review: Whey Pollution Problem and Potential Utilization, Int. J. Food Sci. Technol. 23:323–336.

    Google Scholar 

  • Matser, A.M., Krebbers, B., van den Berg, R.W., and Bartels P.V., 2004, Advantages of High Pressure Sterilisation on Quality of Food Products, Trends Food Sci. Technol. 15:79–85.

    Article  CAS  Google Scholar 

  • Meisel H., 1997, Biochemical Properties of Bioactive Peptides Derived from Milk Proteins: Potential Nutraceuticals for Food and Pharmaceutical Applications, Livesock Prod. Sci. 50:125–138.

    Article  Google Scholar 

  • Meisel H., 2002, Milk Protein-Derived Peptides as Potentially Bioactive Components of Cheese, Proceedings of the 26th International Dairy Congress, IDF, Paris.

    Google Scholar 

  • Meisel, H., and Schlimme E., 1990, Milk Proteins: Precursors oOf Bioactive Peptides, Trends Food Sci. Technol. 1:41–43.

    Article  CAS  Google Scholar 

  • Mendez-Palacios, I., López-Luna, A., Bárzana, E., Jiménez-Guzmán, J., and García-Garibay M., 2006, Development of a Molecularly Imprinted Polymer (MIP) for the Recovery of Lactoferrin, Proceedings of the 13 th World Congress of Food Science and Technology, IUFOST, Nantes, France.

    Google Scholar 

  • Morr C.V., 1989, Whey Proteins: Manufacture, in: Developments in Dairy Chemistry—4. P.F. Fox, (ed.), Elsevier Applied Science, London, pp. 245–284.

    Google Scholar 

  • Mulvihill, D.M., and Ennis M. P., 2003, Functional Milk Proteins: Production and Utilization, in: Advanced Dairy Chemistry, Vol. 1. Proteins. P.F. Fox and P.L.H. McSweeney (eds.), Kluwer Academic, New York, pp. 1175–1228.

    Google Scholar 

  • Mulvihill, D.M. and Fox P.F., 1989, Physico-Chemical and Functional Properties of Milk Proteins, in: Developments in Dairy Chemistry—4. P.F. Fox (ed.), Elsevier Applied Science, London, pp. 131–172.

    Google Scholar 

  • Neville, J.R., Armstrong, K.J. and Price J., 2001, Ultra Whey 99: A Whey Protein Isolate Case Study, Int. J. Dairy Technol. 54:127–129.

    Article  Google Scholar 

  • Pearce R.J., 1992, Whey Protein Recovery and Whey Protein Fractionation, in: Whey and Lactose Processing, J. G. Zadow (ed.), Elsevier Science Pub., London, pp. 271–316.

    Google Scholar 

  • Philanto-Leppälä, A., 2001, Bioactive Peptides Derived from Bovine Whey Proteins: Opioid and Ace-Inhibitory Peptides, Trends Food Sci. Technol. 11:347–356.

    Article  Google Scholar 

  • Philanto-Leppälä, A., 2003, Bioactive Peptides. Milk Proteins, in: Encyclopedia of Dairy Science Vol. 3, H. Roginski, J.E. Fuquay and P.F. Fox (eds.), Academic Press, Amsterdam, pp. 1960 –1967.

    Google Scholar 

  • Renner E., 1989, Nutritional Aspects, in: Whey and Lactose Processing J.G. Zadow (ed.), Elsevier Science Pub., London, pp. 449– 471.

    Google Scholar 

  • Sava, N., van der Plancken, I., Claeys, W., and Hendrickx M., 2005, The Kinetics of Heat-Induced Structural Changes of β-Lactoglobulin, J. Dairy Sci. 88:1646–1653.

    Article  CAS  Google Scholar 

  • Schanbacher, F.L, Talhouk, R.S., and Murray F.A., 1997, Biology and Origin of Bioactive Peptides in Milk, Livestock Prod. Sci. 50:105–123.

    Article  Google Scholar 

  • Shah N., 2000, Effects of Milk Derived Bioactives: an Overview, Brit. J. Nutr. 84 suppl. 1:3–10.

    Article  Google Scholar 

  • Ting, E., Balasubramaniam, V.M., and Raghubeer E., 2002, Determining Thermal Effects in High Pressure Technology, Food Technol. 56:31–35.

    Google Scholar 

  • Trejo-Vázquez, R., Revah-Moiseev, S., Jiménez-Gutiérrez, A., and Ramírez-García F.P., 1995, Solving the Whey Pollution Problem by Ultrafiltration: An Economic Assessment, Rev. Int. Contam. Amb. 11:47–57.

    Google Scholar 

  • Tsuda, H., Sekine, K., Fujita, K., and Ligo M., 2002, Cancer Prevention by Bovine Lactoferin and Underlying Mechanisms—A Review of Experimental and Clinical Studies, Biochem. Cell Biol. 80:131–136.

    Article  CAS  Google Scholar 

  • van Belzen N., 2002, The Role of Lactoferrin in Cancer Prevention, Proceedings of the 26th International Dairy Congress, IDF, Paris, France.

    Google Scholar 

  • Vázquez-Lara, L., Tello-Solís, S., Gómez-Ruiz, L., García-Garibay, M., and Rodríguez-Serrano G.M., 2003, Degradation of α-Lactalbumin and B-Lactoglobulin by Actinidin, Food Biotechnol. 17:117–128.

    Article  CAS  Google Scholar 

  • Walzem, R.L, Dillard, C.J., and German J.B., 2002, Whey Components: Millenia of Evolution Create Functionalities for Mammalian Nutrition: What We Know and What We May be Overlooking, Crit. Rev. Food Sci. Nutr. 42:353–375.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this paper

Cite this paper

García-Garibay, M., Jiménez-Guzmán, J., Hernández-Sánchez, H. (2008). Whey Proteins: Bioengineering and Health. In: Gutiérrez-López, G.F., Barbosa-Cánovas, G.V., Welti-Chanes, J., Parada-Arias, E. (eds) Food Engineering: Integrated Approaches. Food Engineering series. Springer, New York, NY. https://doi.org/10.1007/978-0-387-75430-7_31

Download citation

Publish with us

Policies and ethics