Engineered Food/Protein Structure And Bioactive Proteins and Peptides From Whey

  • I. Recio
  • M. Ramos
  • A. M. R. Pilosof
Part of the Food Engineering series book series (FSES)

Traditionally, whey was considered a by-product in the manufacturing of cheeses with little or no commercial value. This view is changing as novel technical and nutritional applications are being discovered for whey or whey components. The composition of whey depends on the method of cheese manufacture, but the major components are proteins, lactose and minerals. Some whey constituents have unusual properties that make them valuable commercially as sources of flavor enhancers, fat substitutes, food binders, and recently, as functional ingredients with biological activities. This contribution summarizes some of the biological activities attributed to whey proteins and peptides derived thereof and advances in the use of whey proteins in biopolymer mixtures for engineered food structure development.


Whey Protein Milk Protein Bioactive Peptide Cheese Whey Bioactive Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abubakar, A., Saito, T., Kitazawa, H., Kawai, Y., and Itoh T., 1998, Structural Analysis of New Antihypertensive Peptides Derived from Cheese Whey Protein by Proteinase K Digestion, J. Dairy Sci. 81:3131–3138.Google Scholar
  2. Ames, B.N., Shigenaga, M.K., and Hagen T.M., 1993, Oxidants, Antioxidants, and Degenerative Diseases of Aging, Proc. Natl. Acad. Sci. 90:7915–7922.CrossRefGoogle Scholar
  3. Baeza, R.I., and Pilosof A.M.R., 2001, Mixed Biopolymer Gel Systems of B-Lactoglobulin and Non-Gelling Gums, in: Food Colloids, Fundamentals of Formulation, E. Dickinson and R. Miller (eds.), The Royal Society of Chemistry, Cambridge, pp. 392–403.Google Scholar
  4. Baeza, R.I., Carp, D.J., Pérez, O.E., and Pilosof A.M.R., 2002,K-Carrageenan-Protein Interactions: Effect of Proteins on Polysaccharide Gelling and Textural Properties, Lebensm.-Wiss.U.-Technol. 35:741–747.CrossRefGoogle Scholar
  5. Baeza, R.I., Gugliotta, L.M., and Pilosof A.M.R., 2003, Gelation of B -Lactoglobulin in the Presence of Propylene Glycolalginate: Kinetics and Gel Properties, Colloids Surf. B: Biointerfaces 31:8192–93.CrossRefGoogle Scholar
  6. Baveye, S., Elass, E., Mazurier, J., Spik, G., and Legrand D., 1999, Lactoferrin: A Multifunctional Glycoprotein Involved in the Modulation of the Inflammatory Process, Clin. Chem. Lab. Med. 37:281–286.CrossRefGoogle Scholar
  7. Beaulieu, C.M., Turgeon, S.L., and Doublier J.L., 2001, Rheology, Texture and Microstructure of Whey Proteins/Low Methoxyl Pectins Mixed Gels with Added Calcium, Int. Dairy J. 11:961–967.CrossRefGoogle Scholar
  8. Berkhout, B., Floris, R., Recio, I., and Visser S., 2004, The Antiviral Activity of the Milk Protein Lactoferrin Against the Human Immunodeficiency Virus Type 1, BioMetals 17: 291–294.CrossRefGoogle Scholar
  9. Brody E.P., 2000, Biological Activities of Bovine Glycomacropeptide, Br. J. Nutr. 84:S39–S46.CrossRefGoogle Scholar
  10. Capron, I., Nicolai, T. and Durand D., 1999a, Heat Induced Aggregation of B-Lactoglobulin in the Presence of K–Carrageenan, Food Hydrocolloid. 13:1–5.CrossRefGoogle Scholar
  11. Capron, I., Nicolai, T., and Smith C., 1999b, Effect of Addition of K-Carrageenan on the Mechanical and Structural Properties of B -Lactoglobulin Gels, Carbohydr. Polym. 40:233–238.CrossRefGoogle Scholar
  12. Carp, D.J., Bartholomai, G.B., Relkin, P., and Pilosof A.M.R., 2001, Electrophoretic Studies for Determining Soy Proteins–Xanthan Gum Interactions in Foams, Colloids Surf. B 21:163–171.CrossRefGoogle Scholar
  13. Chierici R., 2001, Antimicrobial Actions of Lactoferrin, Adv. Nutr. Res. 10:247–269.Google Scholar
  14. Dávalos, A., Gómez-Cordovés, C., and Bartolomé B., 2004, Extending Applicability of the Oxygen Radical Absorbance Capacity (ORAC-Fluoresceine) Assay, J. Agric. Food Chem. 52:48–54.CrossRefGoogle Scholar
  15. Eleya, M.M.O., and Turgeon S.L., 2000, Rheology of K-Carrageenan And β–Lactoglobulin Mixed Gels, Food Hydrocolloid. 14:29–40.CrossRefGoogle Scholar
  16. Fitzgerald, R.J., and Meisel H., 1999, Lactokinins: Whey Protein-Derived ACE-Inhibitory Peptides, Nahrung 43:165–167.CrossRefGoogle Scholar
  17. Fitzgerald, R.J., Murray, B.A., and Walsh D.J., 2004, Hypotensive Peptides from Milk Proteins, J. Nutr. 134: 980S–988S.Google Scholar
  18. Floris, R., Recio, I., Berkhout, B., and Visser S., 2003, Antibacterial and Antiviral Effects of Milk Proteins and Derivatives Thereof, Curr. Pharm. Design 9:1257–1275.CrossRefGoogle Scholar
  19. Ford J.L., 1999, Thermal Analysis of Hydroxypropylmethycellulose and Methylcellulose: Powders, Gels and Matrix Tables. Int. J. Pharmaceutics 179:209–228.CrossRefGoogle Scholar
  20. Fox P.F., 2001, Milk Proteins as Food Ingredients, Int. J. Dairy Technol. 54:41–55.CrossRefGoogle Scholar
  21. Galazka, V.B., Smith, D., Ledward, D.A., and Dickinson E., 1999, Interactions of Bovine Serum Albumin with Sulphated Polysacchaides: Effects of Ph Ionic Strength and High Pressure Treatment, Food Chem. 64:303–310.CrossRefGoogle Scholar
  22. Gobbetti, M., Minervini, F., and Rizello C.G., 2004, Angiotensin I-Converting- Enzyme-Inhibitory and Antimicrobial Bioactive Peptides, Int. J. Dairy Technol. 57:173–188.CrossRefGoogle Scholar
  23. Grinberg, V.Y.A., and Tolstoguzov V.B., 1997, Thermodynamic Incompatibility of Proteins and Polysaccharides in Solutions, Food Hydrocolloid. 11:145–158.CrossRefGoogle Scholar
  24. Gustafsson, L., Hallgren, O., Mossberg, A.K., Pettersson, J., Fischer, W., Aronsson, A., and Svanbourg C., 2005, HAMLET Kills Tumour Cells by Apoptosis: Structure, Cellular Mechanisms and Therapy, J. Nutr. 135:1299–1303.Google Scholar
  25. Håkansson, A., Malin, S., Mossberg, A.K., Sabharwal, H., Linse, S., Lazou, I., Lönnerdal, B., and Svanborg C., 2000, A Folding Variant of α–Lactalbumin with Bactericidal Activity Against Streptococcus pneumoniae, Mol. Microbiol. 35:589–600.CrossRefGoogle Scholar
  26. Håkansson, A., Zhivotovski, B., Orrenius, S., Sabharwal, H., and Svanborg C., 1995, Apoptosis Induced by a Human Milk Protein, Proc. Nat. Acad. Sci. USA, 92:8064–8068.CrossRefGoogle Scholar
  27. Hernández-Ledesma, B., Miguel, M., Aleixandre, M.A., Recio, I., 2007a, Effect of Simulated Gastrointestinal Digestion on Antihypertensive Properties of Beta-lactoglobulin-derived peptides, J. Dairy Res. 74:336–339.CrossRefGoogle Scholar
  28. Hernández-Ledesma, B., Amigo, L., Recio, I., 2007b, ACE-Inhibitory and Radical Scavenging Activity of Peptides Derived from Beta-Lactoglobulin f(19–25). Synergism with Ascorbic Acid, J. Agric. Food Chem. 55:3392–3397.CrossRefGoogle Scholar
  29. Hernández-Ledesma, B., Dávalos, A., Bartolomé, B., and Amigo, L., 2005, Preparation of Antioxidant Enzymatic Hydrolysates from Alpha-Lactoalbumin and Beta-Lactoglobulin. Identification of Active Peptides by HPLC-MS/MS, J. Agric. Food Chem. 53:588–593.CrossRefGoogle Scholar
  30. Hernández-Ledesma, B., Recio, I., Ramos, M., and Amigo L., 2002, Preparation of Ovine and Caprine β- Lactoglobulin Hydrolysates with ACE-Inhibitory Activity. Identification of Active Peptides from Caprine β–Lactoglobulin Hydrolysed with Thermolysin, Int. Dairy J., 12:805–812.CrossRefGoogle Scholar
  31. Hernández-Ledesma, B., Amigo, L., Ramos, M., Recio, I., 2006, Effect of (β-Lactoglobulin Hydrolysis with Thermolysin Under Denaturing Temperatures on the Release of Bioactive Peptides, J. Chromatography A. 1116:31–37.CrossRefGoogle Scholar
  32. Hoffmann, M.A., Roefs, S.P., Verheul, M., Van Mil, P., and De Kruif C.G., 1996, Aggregation of B-Lactoglobulin Studied by in Situ Light Scattering, J. Dairy Res. 63:423–440.CrossRefGoogle Scholar
  33. Hutchens, T.W., Rumball, S.V., and Lönnerdal B., 1994, Lactoferrin: Structure and Function. Advances in Experimental Medical and Biological, Plenum Press, New York, pp. 1–298.Google Scholar
  34. Ibrahim H.R., 2003, Hen Egg White Lysozyme and Ovotransferrin: Mystery, Structural Role and Antimicrobial Fuction. Proceedings of the X th European Symposium on the Quality of Eggs and Egg Products. Saint-Brieuc, pp, 1113–1128.Google Scholar
  35. Ibrahim, H.R., Aoki, T., and Pellegrini A., 2002, Strategies for New Antimicrobial Proteins and Peptides: Lysozyme and Aprotinin as Model Molecules, Curr. Pharm. Design 8:671–693.CrossRefGoogle Scholar
  36. Jan M.S., 2001, Milk Ingredients as Nutraceuticals, Int. J. Dairy Technol. 54:81–88.CrossRefGoogle Scholar
  37. Korhonen, H.J.T., and Pihlanto A., 2006, Bioactive Peptides: Production and Functionality, Int. Dairy J. 16(9): 945–960.CrossRefGoogle Scholar
  38. López-Fandiño, R., Otte, J., and van Camp J., 2006, Physiological, Chemical and Technological Aspects of Milk Protein Derived Peptides with Antihypertensive and ACE-Inhibitory Activity, Int. Dairy J. (In press).Google Scholar
  39. Manso, M.A., and López-Fandiño R., 2003, Angiotensin I Converting Enzyme-Inhibitory Activity of Bovine, Ovine and Caprine Kapa Caseinmacropeptides and Their Tryptic Hydrolysates, J. Food Prot. 66:1686–1692.Google Scholar
  40. Manso, M.A., and López-Fandiño R., 2004, κ-Caseinmacropeptides from Cheese Whey: Physicochemical, Biological, Nutritional and Technological Features for Possible Uses, Food Rev. Int. 20:329–355.CrossRefGoogle Scholar
  41. Masschalck, B., and Michiels C.W., 2003, Antimicrobial Properties of Lysozyme in Relation to Foodborne Vegetative Bacteria, Crit. Rev. Microbiol. 29:191–214.CrossRefGoogle Scholar
  42. McCristal, C.B., Ford, J.L., and Rajabi-Siahboomi A.R., 1997, A Study on the Interaction of Water and Cellulose Ethers Using Differential Scanning Calorimetry, Thermochimica acta 294:91–98.CrossRefGoogle Scholar
  43. Meisel H., 2005, Biochemical Properties of Peptides Encrypted in Bovine Milk Proteins, Curr. Med. Chem. 12:1905–1919.CrossRefGoogle Scholar
  44. Miguel, M., Manso, M.A., López-Fandiño, R., Alonso, M.J., and Salaices, M., 2007, Vascular Effects and Antihypertensive Properties of Kappa-casein Macropeptide, Int. Dairy J. 17:143–147.CrossRefGoogle Scholar
  45. Monteiro, S.R., Tavares, C., Evtuguin, D.V., Moreno, N., and Lopes da Silva J.A., 2005, Influence of Galactomannans with Different Molecular Weights on the Gelation of Whey Proteins at Neutral pH, Biomacromolecules 6:3291–3299.CrossRefGoogle Scholar
  46. Mullally, M.M., Meisel, H., and FitzGerald R.J., 1996, Synthetic Peptides Corresponding to A-Lactalbumin and B-Lactoglobulin Sequences with Angiotensin-I-Converting Enzyme Inhibitory Activity, Biol. Chem. Hoppe-Seyler 377:259–260.Google Scholar
  47. Mullally, M.M., Meisel, H., and Fitzgerald R.J., 1997, Identification of a Novel Angiotensin I-Converting-Enzyme-Inhibitory Peptide Corresponding to a Tryptic Fragment of Bovine β-Lactoglobulin, FEBS Lett. 402:99–101.CrossRefGoogle Scholar
  48. Murakami, M., Tonouchi, H., Takahashi, R., Kitazawa, H., Kawai, Y., Negishi, H., and Saito T., 2004, Structural Analysis of a New Anti-Hypertensive Peptide (β-Lactosin B) Isolated from a Commercial Whey Product, J Dairy Sci. 87:1967–1974.CrossRefGoogle Scholar
  49. Nurminen, M.L., Sipola, M., Kaarto, H., Pihlanto-Leppälä, A., Piilola, K., Korpela, R., Tossavainen, O., Korhonen, H., and Vapaatalo H., 2000, α-Lactorphin Lowers Blood Pressure Measured by Radiotelementry in Normotensive and Spontaneously Hypertensive Rats, Life Sci. 66:1535–1543.CrossRefGoogle Scholar
  50. Olsson, C., Langton, M., and Hermansson A.M., 2002, Microstructures of B -Lactoglobulin/ Amylopectin Gels on Different Length Scales and Their Significance for Rheological Properties, Food Hydrocolloid. 16:111–126.CrossRefGoogle Scholar
  51. Ondetti, M.A., Rubin, B., and Cushman D.W., 1977, Design of Specific Inhibitors of Angiotensin Converting Enzyme: New Classes of Orally Active Antihypertensive Agents, Science 196:441–444.CrossRefGoogle Scholar
  52. Ould Eleya, M.M., and Turgeon S.L., 2000, Rheology of κ-Carrageenan And β–Lactoglobulin Mixed Gels, Food Hydrocolloid., 14:29–40.CrossRefGoogle Scholar
  53. Parodi P.W., 1998, A Role for Milk Proteins in Cancer Prevention, Aust J Dairy Technol. 53:37–47.Google Scholar
  54. Peña-Ramos, E.A., and Xiong Y.L., 2001, Antioxidative Activity of Whey and Soy Protein Hydrolyzates in a Liposomal System, J. Dairy Sci. 84:2577–2583.CrossRefGoogle Scholar
  55. Pérez, O.E., Wargon, V., and Pilosof A.M.R., 2006, Gelation and Structural Characteristics of Incompatible Whey Proteins/Hydroxypropylmethylcellulose Mixtures, Food Hydrocolloid. 20:966–974.CrossRefGoogle Scholar
  56. Pihlanto, A., and Korhonen H., 2003, Bioactive Peptides And Proteins, Adv Food Nutr. Res. 47:175–276.CrossRefGoogle Scholar
  57. Pihlanto-Leppälä, A., Koskinen, P., Piilola, K., Tupasela, T., and Korhonen H., 2000, Angiotensin I- Converting-Enzyme-Inhibitory Properties of Whey Proteins Digests: Concentration and Characterization of Active Peptides, J. Dairy Res. 67:53–64.CrossRefGoogle Scholar
  58. Renard, D., van de Velde, F., and Visschers R.W., 2006, The Gap Between Food Gel Structure, Texture and Perception, Food Hydrocolloid. 20:423–431.CrossRefGoogle Scholar
  59. Sánchez, V.E., Pilosof, A.M.R., and Bartholomai G.B., 1995, Rheological Properties of Food Gums as Related to Their Water Binding Capacity and to Soy Protein Interaction, Lebensm.Wiss u-Technol. 28:380–385.CrossRefGoogle Scholar
  60. Séverin, S., and Wenshui X., 2005, Milk Biologically Active Components as Nutraceuticals: Review, Crit. Rev. Food Sci. Nutr. 45:645–656.CrossRefGoogle Scholar
  61. Silva, S.V., and Malcata F.X., 2005, Caseins as Source of Bioactive Peptides, Int. Dairy J., 15:1–15.CrossRefGoogle Scholar
  62. Sipola, M., Finckenberg, P., Santisteban, J., Korpela, R., Vapaatalo, H., and Nurminen M.L., 2001, Long-Term Intake of Milk Peptides Attenuates Development of Hypertension in Spontaneously Hypertensive Rats, J. Physiol. Pharmacol. 52:745–754.Google Scholar
  63. Svensson, M., Sabharwal, H., Håkansson, A., Mossberg, A.C., Lipniunas, P., Leffler, H., Svanborg, C., and Linse S., 1999, Molecular Characterization of Folding Variants of α–Lactalbumin That Induces Apoptosis in Human Cells, J. Biol. Chem. 274:6388–6396.CrossRefGoogle Scholar
  64. Tavares, C., and Lopes da Silva J.A., 2003, Rheology of Galactomannan-Whey Protein Mixed Systems, Int. Dairy J. 13:699–706.CrossRefGoogle Scholar
  65. Tavares, C., Monteiro, S.R., Moreno, N., and Lopes da Silva J.A., 2005, Does the Branching Degree of Galactomannans Influence Their Effect on Whey Protein Gelation? Colloids and Surfaces A: Physicochem. Eng. Aspects 270-271:213–219.CrossRefGoogle Scholar
  66. Tolstoguzov V., 1997, Multicomponent Biopolymer Gels, Food Hydrocolloid. 11:159–170.CrossRefGoogle Scholar
  67. Turgeon, S.L., Beaulieu, M., Schmitt, C., and Sánchez C., 2003, Protein-Polysaccharide Interactions: Phase-Ordering Kinetics, Thermodynamic and Structural Aspects, Curr. Opin. Colloid Interface Sci. 8:401–414.CrossRefGoogle Scholar
  68. Verheul, M., Roefs, S., and De Kruif K., 1998, Kinetics of Heat-Induced Aggregation of β-lactoglobulin. J. Agr. Food Chem. 46:896–903.CrossRefGoogle Scholar
  69. Vermeirssen, V., van Camp, J., and Verstraete W., 2004, Bioavailability of Angiotensin I-Converting-Enzyme-Inhibitory Peptides, Br. J. Nutr. 92:357–366.CrossRefGoogle Scholar
  70. Viljoen M., 1995, Lactoferrin: A General Review, Haematologica, 80:252–267.Google Scholar
  71. Wakabayashi, H., Yamauchi, K., and Takase M., 2006, Lactoferrin Research, Technology and Applications. Int Dairy J. 16:1241–1251.CrossRefGoogle Scholar
  72. Walsh, D.J., Bernard, H., Murray, B.A., MacDonald, J., Pentzien, A.K., Wright, G.A., Wal, J.M., Struthers, A.D. Meisel, H., and FitzGerald R.J., 2004, In Vitro Generation and Stability of the Lactokinin Beta-Lactoglobulin Fragment (142–148), J. Dairy Sci. 87: 3845–3857.CrossRefGoogle Scholar
  73. Walzem, R.L., Dillard, C.J., and German J.B., 2002, Whey Components: Millennia of Evolution Create Functionalities for Mammalian Nutrition: What We Know and What We May be Overlooking, Crit. Rev. Food 42:353–375.CrossRefGoogle Scholar
  74. Yoshikawa, M., Tani, F., Yoshimura, T., and Chiba H., 1986, Opioid Peptides from Milk Proteins, Agric. Biol. Chem. 50:2419–2421.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • I. Recio
    • 1
  • M. Ramos
    • 1
  • A. M. R. Pilosof
    • 2
  1. 1.Instituto de Fermentacones Industriales-CSICSpain
  2. 2.Departamento de IndustriasUniversidad de Buenos AiresArgentina

Personalised recommendations