Nonlinear Kinetics: Principles and Potential Food Applications

  • M. G. Corradini
  • M. D. Normand
  • M. Peleg
Part of the Food Engineering series book series (FSES)


Hypothetical Scenario Survival Ratio Lethal Temperature Microbial Inactivation Nonlinear Kinetic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amézquita A., Weller, C.L., Wang, L., Thippareddi, H., and Burson D.E, 2005, Development of an Integrated Model for Heat Transfer and Dynamic Growth of Clostridium Perfringens During the Cooling of Cooked Boneless Ham, Int. J. Food Microbiol. 101:123–144.CrossRefGoogle Scholar
  2. Anderson, W.A., McClure, P.J., Baird-Parker, A.C., and Cole, M.B., 1996, The Application of a Log-logistic Model to Describe the Thermal Inactivation of Clostridium botulinum 213B at Temperatures below 121.1 °C, J. Appl. Bacteriol. 80:283–290.Google Scholar
  3. Baranyi, J., and Roberts T.A. 1994, A Dynamic Approach to Predicting Bacterial Growth in Food. Int., J. Food Microbiol, 23:277–294.CrossRefGoogle Scholar
  4. Barrow G.M. 1996, Phys. Chem., McGraw Hill, New York.Google Scholar
  5. Corradini, M.G., and Peleg M., 2004, A Model of Non-Isothermal Degradation of Nutrients, Pigments and Enzymes, J. Sci. Food Agric., 84:217–226.CrossRefGoogle Scholar
  6. Corradini, M.G., and Peleg M., 2005, Estimating Non-Isothermal Bacterial Growth in Foods from Isothermal Experimental Data. J. Appl. Microbiol. 99:187–200.CrossRefGoogle Scholar
  7. Corradini, M.G., and Peleg M., 2006, On Modeling and Simulating Transitions Between Microbial Growth and Inactivation or Vice Versa, Int. J. Food Microbiol. (In preparation).Google Scholar
  8. Corradini, M.G., Normand, M.D., and Peleg M., 2005, Calculating the Efficacy of Heat Sterilization Processes. J. Food Eng. 67:59–69.CrossRefGoogle Scholar
  9. Corradini, M.G., Normand, M.D., and Peleg M. 2006. On Expressing the Equivalence of Non Isothermal And Isothermal Heat Sterilization Processes, J. Sci. Food Agric. (In preparation).Google Scholar
  10. Datta A.K., 1993, Error Estimates For Approximate Kinetic Parameters Used In Food Literature, J. Food Eng. 18:181–199.CrossRefGoogle Scholar
  11. Fujikawa, H., Kai, A., and Morozumi S., 2004, A New Logistic Model for Escherichia Coli Growth at Constant and Dynamic Temperatures, Food Microbiol. 21:501–509.CrossRefGoogle Scholar
  12. Halder, A., Datta, A.K., and Geedipalli, S.S.R., 2007, Uncertainty in Thermal Process Calculations due to Variability in First Order and Weibull Kinetic Parameters, J. Food Sci. 72:E155–167.CrossRefGoogle Scholar
  13. Koutsoumanis, K., 2001, Predictive modeling of the shelf life of fish under non-isothermal conditions, Applied and Environmental Microbiology 67:1821–1829.CrossRefGoogle Scholar
  14. Labuza T.P. (n.d.). FScN 8334, Reaction Kinetics of Food Deterioration.–1f/FScN8334Reading.html
  15. Mattick, K.L., Legan, J.D., Humphrey, T.J., and Peleg M., 2001, Calculating Salmonella Inactivation in Non-Isothermal Heat Treatments from Isothermal Non Linear Survival Curves, J. Food Prot., 64:606–613.Google Scholar
  16. McKellar, R., and Lu X. (eds.), 2004, Modeling Microbial Responses on Foods, CRC Press, Boca Raton.Google Scholar
  17. Peleg M. 2003. Microbial Survival Curves: Interpretation, Mathematical Modeling and Utilization. Comments Theor. Biol. 8: 357–387.CrossRefGoogle Scholar
  18. Peleg M., 2006, Advanced Quantitative Microbiology for Foods and Biosystems: Modeling and Predicting Ggrowth and Inactivation, CRC Press, Boca Raton (In preparation).Google Scholar
  19. Peleg, M., and Cole M.B., 1998, Reinterpretation of Microbial Survival Curves. Crit. Rev. Food Sci. Nutr. 38:353–380.CrossRefGoogle Scholar
  20. Peleg, M., Corradini, M.G., and Normand M.D., 2004, Kinetic Models of Complex Biochemical Reactions and Biological Processes, Chem. Ing. Tech. 76:413–423.CrossRefGoogle Scholar
  21. Peleg, M., and Normand, M.D., 2004, Calculating Microbial Survival Parameters and Predicting Survival Curves from Non-Isothermal Inactivation Data, Crit. Rev. Food Sci. Nutr. 44:409–418.CrossRefGoogle Scholar
  22. Peleg M., Normand, M.D., and Campanella O.H., 2003, Estimating Microbial Inactivation Parameters from Survival Curves Obtained Under Varying Conditions: The Linear Case, Bull. Math. Biol. 65:219–234.CrossRefGoogle Scholar
  23. Peleg, M., Normand, M.D., and Corradini M.G., 2005. Generating Microbial Survival Curves During Thermal Processing in Real Time, J. Appl. Microbiol. 98:406–417.CrossRefGoogle Scholar
  24. Periago, P.M., van Zuijlen, A., Fernandez, P.S., Klapwijk, P.M., ter Steeg, P.F., Corradini, M.G., and Peleg, M., 2004, Estimation of the Non-Isothermal Inactivation Patterns of Bacillus sporothermodurans IC4 Spores in Soups from their Isothermal Survival Data, Int. J. Food Microbiol. 95:205–218.CrossRefGoogle Scholar
  25. Purich, D., and Allison R.D., 2000, Handbook of Biochemical Kinetics. Academic Press, San Diego.Google Scholar
  26. Valdramidis, V.P., Geeraerd, A.H., Bernaerts, K., and van Impe, J.F., 2004, Dynamic versus Static Thermal Inactivation: the Necessity of Validation Some Modeling and Microbial Hypotheses, paper 434. In Proceedings of the 9th International Conference of Engineering and Food (ICEF 9), Montpellier, France. Societé de Chimie Industrielle, Paris, France. (CD-ROM.).Google Scholar
  27. van Boekel M.A.J.S., 2002, On the Use of the Weibull Model to Describe Thermal Inactivation of Microbial Vegetative Cells, Int. J. Food Microbiol. 74:139–159.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • M. G. Corradini
    • 1
  • M. D. Normand
    • 1
  • M. Peleg
    • 1
  1. 1.Department of Food ScienceUniversity of MassachusettsAmherstUSA

Personalised recommendations