Advertisement

Edible Coating as an Oil Barrier or Active System

  • M. García
  • V. Bifani
  • C. Campos
  • M. N. Martino
  • P. Sobral
  • S. Flores
  • C. Ferrero
  • N. Bertola
  • N. E. Zaritzky
  • L. Gerschenson
  • C. Ramírez
  • A. Silva
  • M. Ihl
  • F. Menegalli
Part of the Food Engineering series book series (FSES)

Edible coatings have long been known to protect perishable food products from deterioration by retarding dehydration, suppressing respiration, improving textural quality, helping to retain volatile flavor compounds and reducing microbial growth (Mauer et al., 2000; Yang and Paulson, 2000; Peressini et al., 2003; Han et al., 2004). Also, they can be used as a vehicle for incorporating functional ingredients, such as antioxidants, flavor, colors, antimicrobial agents and nutraceuticals (Kester and Fennema, 1989; Guilbert et al., 1997; Bifani et al. 2006).

Antimicrobial edible films and coatings are used for improving the shelf life of food products without impairing consumer acceptability (Baker et al., 1994). They are not designed to totally replace traditional packaging, and might be used as a stress factor in minimally processed foods in order to prevent surface contamination while providing a gradual release of the antimicrobial.

Another application of edible films or coatings is as barrier to lipid absorption by food during deep fat frying. Oil uptake in fried foods has become a health concern; high consumption of lipids has been related to obesity and other health problems such as coronary heart disease. Reducing the fat content of fried foods by application of coatings is an alternative solution to comply with both health concerns and consumer preferences. Food coatings may become a good alternative to reduce oil uptake during frying. The effectiveness of a coating is determined by its mechanical and barrier properties, which depend on its composition and microstructure, and on the characteristics of the substrate.

Keywords

Water Vapor Permeability Edible Film Uncoated Sample Edible Coating Potassium Sorbate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aguilera, J. M., and Gloria, H., 1997, Determination of oil in fried potato products by differential scanning calorimetry, J. Agric. Food Chem. 45(3): 781–785.CrossRefGoogle Scholar
  2. Aguilera, J.M., and Gloria-Hernandez H., 2000, Oil Absorption During Frying of Frozen Parfried Potatoes, J. Food Sci. 65 (3):476–479.CrossRefGoogle Scholar
  3. AOAC, 1990, Official Methods of Analysis, 13th ed., Association of Official Analytical Chemists, Washington, DC.Google Scholar
  4. Baker, R., Baldwin, E., and Nisperos-Carriedo M., 1994, Edible Coatings and Films for Processed Foods, in: Edible Coatings and Films to Improve Food Quality, J.M. Krochta, E.A. Baldwin, and M.O. Nisperos-Carriedo (eds.), Technomic Publishing Co. Inc., Lancaster, pp. 89–104.Google Scholar
  5. Balasubramaniam, V.M., Chinnan, M.S., Mallikarjunan, P., and Phillips R.D., 1997, The Effect of Edible Film on Oil Uptake and Moisture Retention of a Deep-Fat Fried Poultry Product, J. Food Process Eng. 20:17–29.CrossRefGoogle Scholar
  6. Bifani, V., Ramírez, C., Ihl, M., Rubilar, M., Garcia A., and Zaritzky N., 2006, Effects of Murta (Ugni molinae Turcz) Extract On Gas And Water Vapor Permeability of Carboxymethylcellulose Based Edible Films, Lebensm.- Wiss. U.-Technol. (In press).Google Scholar
  7. Cagri, A., Ustunoi, Z., and Ryser E.T., 2001, Antimicrobial, Mechanical, and Moisture Barrier Properties of Low Ph Whey Protein-Based Edible Films Containing Aminobenzoic or Sorbic Acids, J. Food Sci. 66(6):865–870.CrossRefGoogle Scholar
  8. Debeaufort, F., and Voilley A, 1997, Methylcellulose-Based Edible Films and Coatings: 2. Mechanical and Thermal Properties as a Function of Plasticizer Content, J. Agric. Food Chem. 45:685–689.CrossRefGoogle Scholar
  9. De Matos, V., 1997, Caracterização Reológica de Soluções de CMC: Viscoelasticidade e Influência de Características da Molécula, Tese de Mestre em Engenharia de Alimentos, Universidade Estadual de Campinas, Campinas.Google Scholar
  10. Donhowe, I.G., and Fennema O.R., 1993, The Effects of Plasticizers on Crystallinity, Permeability, and Mechanical Properties of Methylcellulose Films, J. Food Process. Preserv. 17:247–257.CrossRefGoogle Scholar
  11. Durango A.M., Soares N.F.F., and Andrade N.J., 2005, Microbiological Evaluation of an Edible Antimicrobial Coating on Minimally Processed Carrots, Food control (In press).Google Scholar
  12. FAO, 2004, Global Cassava Market Study Business Opportunities for The Use of Cassava, in: Proceedings of the Validation Forum on the Global Cassava Development Strategy, Volume 6, International Fund for Agricultural Development, Rome.Google Scholar
  13. Funami, T., Funami, M., Tawada, T., and Nakao Y., 1999, Decreasing Oil Uptake Of Doughnuts During Deep-Fat Frying Using Curdlan, J. Food Sci., 64(5):883–888.CrossRefGoogle Scholar
  14. Garcia, A., Ferrero C., Bertola N., Martino, M., and Zaritzky N., 2002, Edible Coatings from Cellulose Derivatives to Reduce Oil Uptake in Fried Products, Innov. Food Sci. Emerging Technol. 3(3):391–397.CrossRefGoogle Scholar
  15. Garcia M., Ferrero, C., Campana A., Bertola, N., Martino, M., and Zaritzky N., 2004, Methylcellulose Coating Applied to Reduce Oil Uptake in Fried Products, Food Sci. Technol. Int. 10(5):339–346.CrossRefGoogle Scholar
  16. Garcia, M., Martino, M., and Zaritizky N., 1998, Plasticized Starch Based Coatings to Improve Strawberry (Fragaris Ananassa) Quality And Stability, J. Agric. Food Chem. 46(9):3758–3767.CrossRefGoogle Scholar
  17. Garcia, M.A., Martino, M.N., and Zaritzky N.E., 2000, Lipid Addition to Improve Barrier Properties of Edible Starch-Based Films and Coating, J. Food Sci. 65(6):941–946.CrossRefGoogle Scholar
  18. Gerschenson, L., and Campos C.A., 1995, Sorbic Acid Stability During Processing and Storage of High Moisture Foods, in: Food Preservation by Moisture Control. Fundamentals and Applications, G. Barbosa-Cánovas and J. Welti-Chanes (eds.), Technomic Publishing Co., Inc., Lancaster, pp. 761–790.Google Scholar
  19. Grover J.A., 1993, Methylcellulose and Its Derivates, in: Industrial Gums, R.L. Whistler and J.N. Be Miller (eds.), Academic Press, San Diego, pp. 475–504.Google Scholar
  20. Guilbert, S., Cuq, B., and Gontard N., 1997, Recent Innovations in Edible and/or Biodegradable Packing Materials, Food Addit. Contam. 6(6–7):741–751.Google Scholar
  21. Han, C., Zhao, Y., Leonard, S.W., and Traber M.G., 2004, Edible Coatinga Improve Storability and Enhance Nutritional Value of Fresh Strawberries (Fragaria x ananassa) and Raspberries (Rubus ideaus), Postharvest Biol. Technol. 33(1):67–78.CrossRefGoogle Scholar
  22. Hels, O., Larsen Christensen, L., Kidmose, U., Hassan, N., and Haraksingh Thilsted S., 2004, Contents of Iron, Calciumzinc and -Carotene in Commonly Consumed Vegetables in Bangladesh, J. Food Compos. Anal. 17(5):587–595.CrossRefGoogle Scholar
  23. Holownia, K.I., Chinnan, M.S., Erickson, M.C., and Mallikarjunan P., 2000, Quality Evaluation of Edible Film-Coated Chicken Strips and Frying Oils, J. Food Sci. 65(6):1087–1090.CrossRefGoogle Scholar
  24. Huse, H.L., Mallikarjunan, P., Chinnan, M.S., Hung, Y.C., and Phillips R.D., 1998, Edible Coatings For Reducing Oil Uptake In Production Of Akara (Deep-Fat Frying Of Cowpea Paste), J. Food Process. Preserv. 22:155–165.CrossRefGoogle Scholar
  25. Kester, J.J., and Fennema O.R., 1989, An Edible Film of Lipids and Cellulose Ethers: Barrier Properties to Moisture Vapor Transmission and Structural Evaluation, J. Food Sci. 54(6):1383–1389.CrossRefGoogle Scholar
  26. Mackinson, J.H., Greenfield, H., Wong, M.L., and Willis R.B.H., 1987, Fat Uptake During Deep-Fat Frying Of Coated And Uncoated Foods, J. Food Compos. Anal. 1:93–101.CrossRefGoogle Scholar
  27. Mali, S., Grossmann, M.V.E., García, M.A., Martino, M.N., and Zaritzky N.E., 2002, Microstructural Characterization of Yam Starch Films, Carbohyd. Polym. 50:379–386.CrossRefGoogle Scholar
  28. Mallikarjunan, P., Chinnan, M.S., Balasubramaniam, V.M., and Phillips, R.D., 1997, Edible Coatings for Deep-Fat Frying of Starchy Products. Lebensm.-Wiss. U Technol. 30:709–714.CrossRefGoogle Scholar
  29. Mauer, L.J., Smith, D.E., and Labuza T.P., 2000, Water Vapor Permeability, Mechanical, and Structural Properties of Edible β-Casein Films, Int. Dairy J. 10(5–6):353–358.CrossRefGoogle Scholar
  30. Mellema M., 2003, Mechanism and Reduction of Fat Uptake in Deep Fat Fried Foods, Trends Food Sci. Technol. 14: 364–373.CrossRefGoogle Scholar
  31. Meyers M.A., 1990, Functionality of Hydrocolloids in Batter Coating Systems, in: Batters and Breadings in Food Processing, K. Kulp and R. Loewe (eds.), American Association for Cereal Chemists, St. Paul, pp. 17–142.Google Scholar
  32. Montenegro G., 2002, Ugni molinae Turcz, in: Chile Nuestra Flora Útil. Guía de Uso Apícola, Medicinal Folclórica, Artesanal y Ornamental, G. Montenegro and B.N. Timmermann, Ediciones Universidad Católica de Chile, Santiago, pp. 241–242.Google Scholar
  33. Normen, E., Rovedo, C.O., and Singh, R.P., 1998, Mechanical Properties of an Immersion Fried Potato Starch-Gluten Gel During Postfrying Period, J. Texture Stud. 29:681–697.CrossRefGoogle Scholar
  34. Paschoalick, T.M., Garcia, F.T., Sobral, P.J.A., and Habitante A.M.Q.B., 2003, Characterization of Some Functional Properties of Edible Films Based on Muscle Proteins of Nile Tilapia, Food Hydrocolloids 17:419–427.CrossRefGoogle Scholar
  35. Peressini, D., Bravin, B., Lapasin, R., Rizzotti, C., and Sensidoni A., 2003, Starch-Methylcellulose Based Edible Films: Rheological Properties of Film-Forming Dispersions, J. Food Eng. 59(1):25–32.CrossRefGoogle Scholar
  36. Pinthus, E.J., Weinberg, P., and Saguy I.S., 1993, Criterion for Oil Uptake During Deep-Fat Frying, J. Food Sci. 58:204–205, 222.CrossRefGoogle Scholar
  37. Rayner, M., Ciolfi, V., Maves, B., Stedman, P., and Mittal G.S., 2000, Development and Application of Soy-Protein Films to Reduce Fat Intake in Deep-Fried Foods, J. Sci. Food Agric. 80:777–782.CrossRefGoogle Scholar
  38. Rubilar, M., Pinelo, M., Ihl, M., Scheuermann, E., Sineiro, J., and Núñez M.J., 2006, Murta Leaves (Ugni molinae Turcz) as a Source of Antioxidant Polyphenols, J. Agric. Food Chem. 54(1):59–64.CrossRefGoogle Scholar
  39. Seguel, I., Peñalosa, E., Gaete, N., Montenegro, A., and Torres A., 2000, Colecta y Caracterización Molecular de Germoplasma de Murta (Ugni molinae Turcz.) en Chile, Revista Agro Sur, 28(2):32–41.Google Scholar
  40. Smith, L.M., Clifford, A.J., Creveling, R.K., and Hamlin C.L., 1985, Lipid Content and Fatty Acid Profiles of Various Deep-Fat Fried Foods, JAOCS. 62:996–999.CrossRefGoogle Scholar
  41. Sofos J.N., 1989, Sorbate Food Preservatives. CRC Press Inc., Boca Raton, pp. 111–129.Google Scholar
  42. Ufheil G. and Escher F., 1996, Dynamics of Oil Uptake During Deep-Fat Frying of Potato Slices, Food Sci. Technol.- Lebensm.-Wiss. U Technol. 29(7):640–644.CrossRefGoogle Scholar
  43. Vais, A., Palazoglu, T., and Sandeep K., 2002, Rheological Characterization of Carboxymethylcellulose Solution Under Aseptic Processing Condition, J. Food Process. Eng. 25:41–46.CrossRefGoogle Scholar
  44. Vanderzant, M., and Splittstoesser R., 1992, Compendium of the Methods for the Microbiological Examination of Foods, 4th ed., American Public Health Association, Washington.Google Scholar
  45. Williams, R., and Mittal G.S., 1999, Water and Fat Transfer Properties of Polysaccharide Films on Fried Pastry Mix, Lebensm.-Wiss. U Technol. 32:440–445.CrossRefGoogle Scholar
  46. Yang, L., and Paulson A.T., 2000, Mechanical and Water Vapor Barrier Properties of Edible Gellan Films, Food Res. Int. 33(7):563–570.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • M. García
    • 1
  • V. Bifani
    • 2
  • C. Campos
    • 3
  • M. N. Martino
    • 1
  • P. Sobral
    • 4
  • S. Flores
    • 3
  • C. Ferrero
    • 1
  • N. Bertola
    • 1
  • N. E. Zaritzky
    • 1
  • L. Gerschenson
    • 3
  • C. Ramírez
    • 2
  • A. Silva
    • 2
  • M. Ihl
    • 2
  • F. Menegalli
    • 5
  1. 1.Centro de Investigación y Desarrollo en Criotecnología de AlimentosUniversidad NacionalArgentina
  2. 2.Departamento de Ingeniería QuímicaUniversidad de La FronteraChile
  3. 3.Departamento de IndustriasUniversidad de Buenos AiresArgentina
  4. 4.Departamento de Engenharia de AlimentosUniversidade de São PauloBrazil
  5. 5.Departamento de Engenharia de AlimentosUniversidade Estadual de CampinasBrazil

Personalised recommendations