Films Based on Biopolymer from Conventional and Non-Conventional Sources

  • P. Sobral
  • J. D. De Alvarado
  • N. E. Zaritzky
  • J. B. Laurindo
  • C. Gómez-Guillén
  • M. C. Añón
  • P. Montero
  • G. Denavi
  • S. Molina Ortíz
  • A. Mauri
  • A. Pinotti
  • M. García
  • M. N. Martino
  • R. Carvalho
Part of the Food Engineering series book series (FSES)

Edible films are thin materials based on biopolymers. These films are also biodegradable and because of that, these materials have attracted the attention of the food science academic community in the last decades. The main biopolymers used in the edible films production are polysaccharides (Nisperos-Carriedo, 1994) and proteins (Gennadios et al., 1996).

The polysaccharide most used in edible film technology is starch, because it is produced abundantly and is inexpensive. But other polysaccharides, such as chitosan and some cellulose derivates, have been also studied. Normally, proteins produced industrially, such as soja and gelatin from mammals, are largely applied in film production. However, some proteins from less conventional sources, such as muscle proteins, gelatin from fish, and feather keratins, have also been studied in the last several years. Thus, this work will present and discuss some aspects of edible and/or biodegradable film technology based on biopolymers from conventional or less conventional resources.


Composite Film Water Vapor Permeability Chitosan Film Gelatin Film Nile Perch 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Almeida, A.V., and Arancibia M.Y., 2005, Desarrollo de Una Tecnología para la Obtención de Quitina y Quitosano a Partir del Caparazón de Camarón (Penaeus Vannamei). Thesis, Universidad Técnica de Ambato-Facultad de Ciencia e Ingeniería en Alimentos, Ambato. p110.Google Scholar
  2. Alvarado, J. de D., Almeida, A.V., and Arancibia M.Y., 2005, Permeabilidad al Vapor de Agua de Películas Biodegradables de Quitosano Obtenido de Caparazones de Camarón, Ciencia y Tecnología 4(2):39–47.Google Scholar
  3. Alvarado, J. de D., Almeida, A., Arancibia, M., Aparecida de Carvalho, R., Sobral, P.J. A., Quinta Barbosa Habitante, A.M., Monterrey-Quintero, E.S., and Sereno A., 2006, Método Directo para la Obtención le Quitosano de Desperdicios de Camarón para la Elaboración de Películas Biodegradables, Pesquisa Agropecuária Brasileira (submitted).Google Scholar
  4. Arai, K.M., Takahashi, R., Yokote, Y., and Akahane K., 1983, Amino-Acid Sequence of Feather Keratin from Fowl, Eur. J. Biochem. 32:501–510.Google Scholar
  5. Argukelles, W., Monal, F., Goycoolea, C., Peniche, I., and Higuera C., 1998, Rheological Study of The Chitosan/Glutaraldehyde Chemical Gel System, Polymer Gels Netw. 6:429–440.Google Scholar
  6. Arvanitoyannis I.S., 2002, Formation and Properties of Collagen and Gelatin Films and Coatings, in: Protein-Based Films and Coatings. A. Gennadios (ed.), CRC Press, Boca Ratón, pp. 275–304.Google Scholar
  7. Arvanitoyannis I., and Biliaderis C.G., 1998, Physical Properties of Polyol-Plasticized Edible Films Made from Sodium Caseinate and Soluble Starch Blends, Food Chem. 6(3):333–342.Google Scholar
  8. Arvanitoyannis, I., Psomiadou, E., and Nakayama A., 1996, Edible Films Made from Sodium Caseinate, Starch, Sugars or Glycerol. Part. 1. Carbohydr. Polym. 31:179–192.Google Scholar
  9. Arvanitoyannis, I., Psomiadou, E., Nakayama, A., and Yamamoto N., 1997, Edible Films Made from Gelatin, Soluble Starch and Polyols, Part. 3. Food Chem. 60:593–604.Google Scholar
  10. Asghar, A., and Henrickson, R L., 1982, Chemical, Biochemical, Functional, and Nutritional Characteristics of Collagen in Food Systems, in: Advances in Food Research, vol. 28. Academic Press, London, pp. 232–372.Google Scholar
  11. ASTM, 1996, Standard Test Methods for Water Vapor Transmission of Material, E96–95. Annual book of ASTM. Philadelphia.Google Scholar
  12. ASTM, D584–96, 1997, Standard Test Methods for Wool Content of Raw Wool, in: Annual Book of ASTM Standards, (1–5), ASTM, Philadelphia.Google Scholar
  13. ASTM, D4092, (1996), Standard Terminology: Plastics: Dynamic Mechanical Properties, ASTM, Philadelphia.Google Scholar
  14. Bertan, L.C., Tanada-Palmu, P.S., Sian, A.C., and Grosso C.R.F., 2005, Effect of Fatty Acids and Brazilian elemi on Composite Films Based on Gelatin, Food Hydrocolloid. 19(1):73–82.Google Scholar
  15. Buonocore, G.G., Conte, A., and Del Nobile M.A., 2005, Use of a Mathematical Model to Describe the Barrier Properties of Edible Films, J. Food Sci. 70(2):E142–E147.Google Scholar
  16. Butler, B., Vergano, R., Testin, R., Bunn, J., and Wiles J., 1996, Mechanical and Barrier Properties of Edible Chitosan Films as Affected by Composition and Storage, J. Food Sci. 61(5):953–961.Google Scholar
  17. Caner, C., Vergano, P., and Wiles J., 1998, Chitosan Film Mechanical and Permeation Properties as Affected by Acid, Plasticizer, and Storage, J. Food Sci. 63(6):1049–1053.Google Scholar
  18. Chen, M., Yeh, H., and Chiang B., 1996, Antimicrobial and Physicochemical Properties of Methylcellulose and Chitosan Films Containing a Preservative, J. Food Process. Preserv. 20:379–390.Google Scholar
  19. Chen, R.H., and Lin J.H., 1994, Relationships Between the Chain Flexibilities of Chitosan Molecules and the Physical Properties of Their Casted Films, Carbohydr. Polym. 24:41–46.Google Scholar
  20. Cho, S.M., Gu, Y.S., and Kim S.B., 2005, Extracting Optimization and Physical Properties of Yellowfin Tuna (Thunnus Albacares) Skin Gelatin Compared to Mammalian Gelatins, Food Hydrocoloid. 19(2):221–229.Google Scholar
  21. Cho, S.M., Kwak, K.S., Park, D.C., Gu, Y.S., Ji, C.I., Jang, D.H., Lee, Y.B., and Kim S.B., 2004, Processing Optimization and Functional Properties of Gelatin from Shark (Isurus oxyrinchus) Cartilage. Food Hydrocoloid. 18(4):573–579.Google Scholar
  22. Cho, S.Y., and Rhee C., 2004, Mechanical Properties and Water Vapor Permeability of Edible Films Made from Fractions Soy Proteins with Ultrafiltration, Lebensm.- Wiss. U.-Technol. 37:833–839.Google Scholar
  23. Choi, W., Park, H., Ahn, D.J., Lee, J. and Lee C., 2002, Wettability of Chitosan Coating Solution on “Fuji” Apple Skin, J. Food Sci. 67(7):2668–2672.Google Scholar
  24. Choi, W.S., and Han, J.H., 2002, Film-Forming Mechanism and Heat Desnaturation Effects on the Physical and Chemical Properties of Pea-Protein-Isolate Edible Films, J. Food Sci., 67:1399–1406.Google Scholar
  25. Colla, E., do Amaral Sobral, P.J., and Cecília Menegalli F., 2006, Amaranthus cruentus Flour Edible Films: Influence of Stearic Acid Addition, Plasticizer Concentration, and Emulsion Stirring Speed on Water Vapor Permeability and Mechanical Properties, Agric. Food Chem. 54 (18):6645–6653.Google Scholar
  26. Cunningham, P., Ogale, A., Dawson, P., and Acton J., 2000, Tensile Properties of Soy Protein Isolate Films Produced by a Thermal Compaction Technique, J. Food Sci. 65(4):668–671.Google Scholar
  27. Cuq, B., Aymard, C., Cuq, J.L., and Guilbert S., 1995, Edible Packaging Films Based on Fish Myofibrillar Proteins: Formation and Functional Properties, J. Food Sci. 60:1369–1374.Google Scholar
  28. Cuq, B., Gontard, N., Cuq, J.L., and Guilbert S., 1996a, Stability Of Myofibrillar Protein-Based Biopackagings During Storage, Lebensm.-Wiss.-und-Tech. 29:344–348.Google Scholar
  29. Cuq, B., Gontard, N., Cuq, J.L., and Guilbert S., 1996b, Functional Properties of Myofibrilar Protein-Based Biopackaging as Affected by Film Thickness, J. Food Sci. 61:580–584.Google Scholar
  30. Cuq, B., Gontard, N., Cuq, J.L., and Guilbert S., 1997, Selected Functional Properties of Fish Myofibrillar Protein-Based Films as Affected by Hydrophilic Plasticizers, J. Agric. Food Chem. 45:622–626.Google Scholar
  31. Cuq, B., Gontard, N., and Guilbert S., 1998, Proteins as Agricultural Polymers for Packaging Production, Cereal Chem. 75:1–9.Google Scholar
  32. Debeaufort, F., and Voilley A., 1997, Methylcellulose-Based Edible Films and Coatings: 2. Mechanical and Thermal Properties as a Function of Plasticizer Content, J. Agric. Food Chem. 45:685–689.Google Scholar
  33. Devlieghere, F., Vermeulen, A., and Debevere J., 2004, Chitosan: Antimicrobial Activity, Interactions with Food Components and Applicability as a Coating on Fruit and Vegetables. Food Microbiol. 21:703–714.Google Scholar
  34. Djabourov, M., Lechaire, J. and Gaill F., 1993, Structure and Rheology of Gelatin and Collagen Gels, Biorheology 30:191–205.Google Scholar
  35. Donhowe, I.G., and Fennema O., 1993a, The Effects of Plasticizers on Crystallinity, Permeability and Mechanical Properties of Methylcellulose Films, J. Food Process. Preserv. 17:247–258.Google Scholar
  36. Donhowe, I.G., and Fennema, O., 1993b, The Effects of Solution Composition and Drying Temperature on Crystallinity, Permeability and Mechanical Properties of Methylcellulose Films, J. Food Process. Preserv. 17:231–246.Google Scholar
  37. Fukushima D., 1991, Recent Progress of Soybean Protein Foods: Chemistry, Technology, and Nutrition, Food Rev. Intern. 7:323–351.Google Scholar
  38. Galed, G., Martínez, A. García, C., and Heras A., 2000, Relationship Between Physicochemical Characteristics and Functional Properties of Different Chitosans, in: Memorias del Primer Simposio Latinoamericano de Quitina y Quitosano, La Habana. pp. 400–405.Google Scholar
  39. Garcia, F.T., and Sobral P.J.A., 2005, Effect of the Thermal Treatment of the Filmogenic Solution on the Mechanical Properties, Color and Opacity of Films Based on Muscle Proteins of Two Varieties of Tilapia, Lebensm.-Wiss.-und-Tech. 38(3):289–296.Google Scholar
  40. García, M.A., Pinotti, A., Martino, M., and Zaritzky N., 2004, Characterization of Composite Hydrocolloid Films, Carbohydr. Polym. 56(3):339–345.Google Scholar
  41. Gennadios A., 2002, Protein Based Films and Coatings, CRC Press., USA.Google Scholar
  42. Gennadios, A., Weller, C.L., Hanna, M.A., and Froning G.W., 1996, Mechanical and Barrier Properties of Egg Albumen Films, J. Food Sci. 61(3):585–589.Google Scholar
  43. Giménez, B., Gómez-Guillén, M.C., and Montero, P., 2005a, The Role of Salt Washing of Fish Skins in Gelatin Extraction, Food Hydrocolloid. 19:951–957.Google Scholar
  44. Giménez, B., Turnay, J. Gómez-Guillén, M.C., and Montero P., 2005b, Use of Lactic Acid for Extraction of Fish Skin Gelatin, Food Hydrocolloid. 19:941–950.Google Scholar
  45. Gómez-Estaca, J., Gómez-Guillén, M.C., and Montero P., 2006, Alta Presión y Películas Protectoras para Mejorar la Calidad del Pescado Ahumado en Frío, CYTALIA. X Congreso Anual de Ciencia y Tecnología de los Alimentos, Madrid.Google Scholar
  46. Gómez-Guillén, M.C., Giménez, B., and Montero P., 2005, Extraction of Gelatin from Fish Skins by High Pressure Treatment, Food Hydrocoloidl. 19:923–928.Google Scholar
  47. Gómez-Guillén, M.C., and Montero, P., 2001, Extraction Of Gelatin from Megrim (Lepidorhombus boscii) Skins with Several Organic Acids, J. Food Sci. 66(2):213–216.Google Scholar
  48. Gómez-Guillén, M.C., and Montero P., 2003, Potencial del Empleo de Gelatinas de Nuevos Orígenes en la Tecnología de Películas Flexibles, IV Iberoamerican Congress on Food Engineering, Valparaíso.Google Scholar
  49. Gómez-Guillén, M.C., Turnay, J., Fernández-Díaz, M.D., Olmo, N., Lizarbe, M.A., and Montero P., 2002, Structural and Physical Properties of Gelatin Extracted from Different Marine Species: A Comparative Study, Food Hydrocolloid. 16:25–34.Google Scholar
  50. Gontard, N., Duchez, C., Cuq, J.L., and Guilbert S., 1994, Edible Composite Films of Wheat Gluten and Lipids: Water Vapour Permeability and Other Physical Properties, Int. J. Food Sci. Technol. 29:39–50.Google Scholar
  51. Gontard, N., Guilbert, S., and Cuq J.L., 1993, Water and Glycerol as Plasticizers Affect Mechanical and Water Vapor Properties An Edible Wheat Gluten Film, J. Food Sci. 58(1):206–211.Google Scholar
  52. Gontard N., Marchesseau, S., Cuq, J.L., and Guilbert S., 1995, Water Vapour Permeability of Edible Bilayer Films of Wheat Gluten and Lipids, Int. J. Food Sci. Technol. 30: 49–56.Google Scholar
  53. Grossman, S., and Bergman M., 1992, Process for the Production of Gelatin from Fish Skins. U.S. Patent 5, 093, 474.Google Scholar
  54. Gudmundsson, M., and Hafsteinsson H., 1997, Gelatin from Cod Skins as Affected by Chemical Treatments, J. Food Sci. 62:37–39.Google Scholar
  55. Habitante, A.M., Montero, P., Gómez-Guillén, M.C., Sobral, P., and Carvalho R., 2005, Desarrollo de Películas Comestibles Basadas en Gelatinas de Piel de Pescados: Atún Y Fletán, V Iberoamerican Congress on Food Engineering, Puerto Vallarta.Google Scholar
  56. Han, C., Lederer, C., McDaniel, M., and Zhao Y., 2005, Sensory Evaluation of Fresh Strawberries (Fragaria ananassa) Coated with Chitosan-Based Edible Coatings, J. Food Sci. 70(3):172–178.Google Scholar
  57. Issam, S., Martial-Gros, A., Carnet-Pantiez, A., Grelier, S., and Coma V., 2005, Chitosan Polymer as Bioactive Coating and Film Against Aspergillus Niger Contamination, J. Food Sci. 70(2):101–105.Google Scholar
  58. Iwata, K., Ishizaki, S., Handa, A., and Tanaka M., 2000, Preparation and Characterization of Edible Films from Fish Water-Soluble Proteins, Fisheries Sci. 66:372–378.Google Scholar
  59. Johnston-Banks F.A., 1990, Gelatin, in: Food Gels. P. Harris, (ed.), Elsevier Applied Science Publishers, London. pp. 233–289.Google Scholar
  60. Jongjareonrak, A., Benjakul, S., Visessanguan, W., and Tanaka M., 2005, Isolation and Characterization of Collagen from Bigeye Snapper (Priacanthus macracanthus) Skin, J. Sci. Food Agr. 85(7): 1203–1210.Google Scholar
  61. Jongjareonrak, A., Benjakul, S., Visessanguan, W., and Tanaka, M., 2006a, Effects of Plasticizers on the Properties of Edible Films from Skin Gelatin of Bigeye Snapper and Brownstripe Red Snapper. Eur. Food Res. Technol. 222(3–4):229–235.Google Scholar
  62. Jongjareonrak, A., Benjakul, S., Visessanguan, W., and Tanaka M., 2006b, Characterization of Edible Films from Skin Gelatin of Brownstripe Red Snapper and Bigeye Snapper, Food Hydrocolloid. 20(4):492–501.Google Scholar
  63. Jongjareonrak, A., Benjakul, S., and Visessanguan W., 2006c, Fatty Acids and Their Sucrose Esters Affect the Properties of Fish Skin Gelatin-Based Film, Eur. Food Res. Technol. 222(5–6):650–657.Google Scholar
  64. Kirk, R., and Othmer N., 1970, Enciclopedia de Tecnología Química. Editorial Hispano Americana, México, 13: 423–428.Google Scholar
  65. Krochta, J.M., and De Mulder-Johnston C., 1997, Edible and Biodegradable Polymer Films: Challenges and Opportunities, Food Technol. 51(2): 61–77.Google Scholar
  66. Kunte, L.A., Gennadios, A., Cuppett, S.L., Hanna, M.A., and Weller C.L., 1997, Cast Films from Soy Protein Isolates and Fractions, Cereal Chem. 74:115–118.Google Scholar
  67. Lawrence, M.C., Izard, T., Beuchat, M., Blagrove, R.J., and Coleman P.M, 1994, Structure of Phaseolin At 2.2 Angstroms Resolution: Implications for a Common Vicilin/Legumin Structure and the Genetic Engineering of Seed Storage Proteins, J. Mol. Biol. 238:748–776.Google Scholar
  68. Ledward, D.A. 1986. Gelation of Gelatin, in: Functional Properties of Food Macromolecules, J.R. Mitchell, and D.A. Ledward (eds.), Elsevier Applied Science Publishers, London. pp: 171–201.Google Scholar
  69. Lee, K.Y., Shim, J., and Lee H.G., 2004, Mechanical Properties of Gellan And Gelatin Composite Films, Carbohydr. Polym. 56:251–254.Google Scholar
  70. López-Caballero, M.E., Gómez-Guillén M.C., Pérez-Mateos, M., and Montero P., 2005, A Chitosan-Gelatin Blend As A Coating For Fish Patties, Food Hydrocolloid. 19:303–311.Google Scholar
  71. Mali, S., Grossmann, M.V., García, M.A., Martino, M.N., and Zaritzky N.E., 2002, Microstructural Characterization of Yam Starch Films, Carbohydr. Polym. 50(4):379–386.Google Scholar
  72. Mariniello, L., Di Pierro, P., Esposito, C., Sorrentino, A., Masi, P., and Porta R., 2003, Preparation and Mechanical Properties of Edible Pectin-Soy Flour Films Obtained in the Absence or Presence of Transglutaminase, J. Biotechnol. 102(2): 191–8.Google Scholar
  73. Martelli, S.M., Moore, G.P.R., Paes, S.S., Gandolfo, C.A., and Laurindo J.B., 2006, Influence of Plasticizers on the Water Sorption Isotherms and Water Vapor Permeability of Chicken Feather Keratin Film, Lebensm.- Wiss. U.-Technol. - Food Sci.Technol. 39:292–301.Google Scholar
  74. McHugh, T.H., and Krochta J.M., 1994, Sorbitol vs. Glycerol Plasticized Whey Protein Edible Films: Integrated Oxygen Permeability and Tensile Property Evaluation, J. Agric. Food Chem. 42(4):841–845.Google Scholar
  75. Menegalli, F.C., Sobral, P.J.A., Roques, M.A., and Laurent S., 1999, Characteristics of Gelatin Biofilms in Relation to Drying Process Conditions Near Melting, Drying Tech. 17(7–8):1697–1706.Google Scholar
  76. Miranda P., Garnica, S., and Lara-Sagahon O., 2004, Water Vapor Permeability and Mechanical Properties of Chitosan Composite Films, J. Chilean Chem. Soc. 49(2):173–178.Google Scholar
  77. Monahan, F.J., German, J.B., and Kinsella J.E., 1995, Effect of Ph and Temperature on Protein Unfolding and Thiol/Disulfide Interchange Reactions During Heat-Induced Gelation of Whey Proteins, J. Agric. Food Chem. 43:46–52.Google Scholar
  78. Montero, P., and Gómez-Guillén M.C., 2005, Función Protectora de Películas y Coberturas Basadas en Gelatina de Pescado, V Iberoamerican Congress on Food Engineering, Puerto Vallarta.Google Scholar
  79. Monterrey-Quintero, E.S., and Sobral P.J.A., 1999, Caracterização de Propriedades Mecânicas E Óticas de Biofilmes À Base de Proteínas Miofibrilares de Tilápia do Nilo Usando Uma Metodologia de Superfície-Resposta. Ciên. e Tecn. de Alim. 19(2):294–301.Google Scholar
  80. Monterrey-Quintero, E.S., and Sobral P.J.A., 2000, Preparo E Caracterização de Proteínas Miofibrilares de Tilápia do Nilo (Oreochromis Niloticus) para Elaboração de Biofilmes. Pesq. Agropec. Bras. 35(1):179–189.Google Scholar
  81. Moore, G.R.P., Martelli, S., Gandolfo, C.A, Sobral, P.J.A., and Laurindo J.B., 2006, Influence of the Glycerol Concentration on Some Physical Properties of Feather Keratin Films Food Hydrocolloids, J. Food hydrocolloid. 20(7):975–982.Google Scholar
  82. Muyonga, J.H., Cole, C.G.B., and Duodu K.G., 2004, Extraction and Physico-Chemical Characterisation of Nile Perch (Lates niloticus) Skin and Bone Gelatin, Food Hydrocolloid. 18(4):581–592.Google Scholar
  83. Muzzarelli, R., Baldassarre, V, Conti, F., Ferrara, P., Biagini, G., Gazzanelli, G., and Vasi V., 1988, Biological Activity of Chitosan: Ultrastructural Study, Biomaterials, 9(3):247–252.Google Scholar
  84. Nagano, T., Motohiko, H., Mori, H., Kohyama, K., and Nishinari K., 1992, Dynamic Viscoelastic Study on the Gelation of Conglycinin Globulin from Soybeans, J. Agric. Food Chem. 40:941–944.Google Scholar
  85. Nisperos-Carriedo M.O., 1994, Edible Coatings and Films Based on Polysaccharides, in: Edible Coatings and Films to Improve Food Quality, J.M. Krochta, E.A. Baldwin and M.O. Nisperos-Carriedo (eds.), Technomic Pub., Lancaster. pp. 305–330.Google Scholar
  86. Norland, R.E., 1990, Fish Gelatin, in: Advances in Fisheries Technology and Biotechnology for Increased Profitability, M.N. Voight, and J.K. Botta (eds.), Technomic Publishing Co., Lancaster. pp: 325–333.Google Scholar
  87. Paschoalick, T.M., Garcia, F.T., Sobral, P.J.A., and Habitante A.M.Q.B., 2003, Characterization of Some Functional Properties of Edible Films Based on Muscle Proteins of Nile Tilapia, Food Hydrocolloid. 17(4):419–427.Google Scholar
  88. Park, H, Weller, C., Vergano, P., and Testin R., 1993, Permeability and Mechanical Properties of Cellulose-Based Edible Films, J. Food Sci. 58(6):1361–1364, 1370.Google Scholar
  89. Parris N., Dickey, L., Kurantz, M.J., Moten, R.O., and Craig J.C., 1997, Water Vapor Permeability and Solubility of Zein/Starch Hydrophilic Films Prepared from Dry Milled Corn Extract, J. Food Eng. 32:199–207.Google Scholar
  90. Perez-Gago, M.B., and Krochta, J.M., 2001, Denaturation Time and Temperature Effects on Solubility, Tensile Properties, and Oxygen Permeability of Whey Protein Edible Films, J. Food Sci., 66:705–710.Google Scholar
  91. Petruccelli, S., and Añón M. C., 1995, Partial Reduction of Soy Proteins Isolate Disulfide Bonds, J. Agric. Food Chem. 43:2001–6.Google Scholar
  92. Pinelli Saavedra, A., Toledo Guillén, A., Ezquerra Brauer, I., Luviano Silva, A., and Higuera Ciapara I., 1998, Métodos de Extracción de Quitina a Partir de Cáscara de Camarón, Arch. Lat. Nutr. 48(1):58–61.Google Scholar
  93. Ramírez, M., Rodríguez, A., and Cárdenas R., 1998, Preparación de Hidrolizados Bioactivos de Quitosana a Partir de Diferentes Fuentes. Instituto Nacional de Ciencias Agrícolas, San José de las Lajas (April 30, 2004)
  94. Rayas, L.M., Hernández, R.J., and Ng P.K.W., 1997, Development and Characterization of Biodegradable/Edible Wheat Protein Films, J. Food Sci. 62(1):160–162.Google Scholar
  95. Saunders, R.M., and Becker R., 1984, Amaranthus: A Potential Food and Feed Resource, Adv. Cereal Science Technol. 6:357–396.Google Scholar
  96. Schrooyen, P.M.M., Dijkstra, P.J., Oberthür, R., Bantjes, A., and Feijen J., 2000, Partially Carboxymethylated Feather Keratins. 1. Properties in Aqueous Systems, J. Agric. Food Chem. 48:4326–4334.Google Scholar
  97. Schrooyen, P.M.M., Dijkstra, P.J., Oberthür, R., Bantjes, A., and Feijen J., 2001a, Partially Carboxymethylated Feather Keratins. 2. Thermal and Mechanical Properties of Films, J. Agric. Food Chem. 49:221–230.Google Scholar
  98. Schrooyen, P.M.M., Dijkstra, P.J., Oberthür, R., Bantjes, A., and Feijen J., 2001b, Stabilization of Solutions of Feather Keratins by Sodium Dodecyl Sulfate, J. Colloid Interface Sci. 240:30–39.Google Scholar
  99. Shahidi F., 1994, Seafood Processing By-Products, in: Seafoods Chemistry, Processing, Technology and Quality, F. Shahidi and J.R. Botta (eds.), Blackie Academic & Professional, Glasgow. pp. 320–334.Google Scholar
  100. Shellhammer, T.H., and Krochta J.M., 1997, Whey Protein Emulsion Film Performance as Affected by Lipid Type Amount, J. Food Sci. 62(2):390–394.Google Scholar
  101. Shepherd, R., Reader, S., and Falshaw A., 1997, Chitosan Functional Properties, Glycoconjugate J. 14:535–542.Google Scholar
  102. Simon-Lukasik, K.V., and Ludescher R.D., 2004, Erythrosin b Phosphorescence as a Probe of Oxygen Diffusion in Amorphous Gelatin Films, Food Hydrocol. 18(14):621–630.Google Scholar
  103. Smith S.A., 1986, Polyethylene, Low Density, in: The Wiley Encyclopedia of Packaging Technology, M. Bakker (ed.), John Wiley & Sons, New York. pp. 514–523.Google Scholar
  104. Sobral, P.J.A., 2000, Influência da Espessura Sobre Certas Propriedades de Biofilmes À Base de Proteínas Miofibrilares, Pesq. Agropec. Bras. 35(6):1251–1259.Google Scholar
  105. Sobral, P.J.A., 1999, Propriedades Funcionais de Biofilmes de Gelatina em Função da Espesura, Ciên. Eng. 8(1):60–67.Google Scholar
  106. Sobral, P.J.A., Garcia, F.T., Habitante, A.M.Q.B., and Monterrey-Quintero E.S., 2004, Propriedades de Filmes Comestíveis Produzidos com Diferentes Concentrações de Plastificantes e de Proteínas do Músculo de Tilápia-do-Nilo, Pesquisa Agropecuária Brasileira 39(3):255–262.Google Scholar
  107. Sobral P.J.A., Menegalli, F.C., Hubinguer, M.D. and Roques M.A., 2001, Mechanical, Water Vapor Barrier and Thermal Properties of Gelatin Based Edible Films, Food Hydrocolloid. 15: 423–32.Google Scholar
  108. Sobral, P.J.A., Monterrey-Quintero, E.S. and Habitante A.M.Q.B., 2002, Glass Transition of Nile Tilapia Myofibrillar Protein Films Plasticized by Glycerin and Water, J. Thermal Anal. Calor. 67: 499–504.Google Scholar
  109. Sobral, P.J.A., and Ocuno D., 2000, Permeabilidade ao Vapor de Água de Biofilmes À Base de Proteínas Miofibrilares de Carne, Braz. J. Food Techn. 3:11–16.Google Scholar
  110. Sobral, P.J.A, Ocuno, D., and Savastano Jr, H., 1998, Preparo De Proteínas Miofibrilares de Carne E Elaboração de Biofilmes com Dois Tipos ce Ácidos: Propriedades Mecânicas, Braz. J. Food Techn. 1:(1/2) 44–52.Google Scholar
  111. Sobral, P.J.A., Santos, J.S. and Garcia F.T., 2005, Effect of Protein and Plasticizer Concentrations in Film Forming Solutions on Physical Properties of Edible Films Based on Muscle Proteins of a Thai Tilapia, J. Food Eng. 70 (1):93–100.Google Scholar
  112. Souza, S.M.A., Sobral, P.J.A., and Menegali F.C., 2004, Extração de Proteínas Miofibrilares de Carne Bovina para Elaboração de Filmes Comestíveis, Ciência e Tecnologia de Alimentos 24(4):619–626.Google Scholar
  113. Srinivasa, P.C., Ramesh, M., Kumar, K, Tharanathan, R., 2004, Properties of Chitosan Films Prepared Under Different Drying Conditions, J. Food Eng. 63:79–85.Google Scholar
  114. Taboada, E., Cabrera, G. and Cardenas G., 2003, Retention Capacity of Chitosan for Copper and Mercury Ions, J. Chilean Chem. Soc. 48(1):7–12.Google Scholar
  115. Tanaka M., Iwata K., Sanguandeekul R., Handa, A., and Ishizaki S., 2001, Influence of Plasticizers on the Properties of Edible Films Prepared from Fish Water-Soluble Proteins, Fisheries Sci. 67(2):346–351.Google Scholar
  116. Tanveer, A.K., Kok, K.P. and Hung S.C., 2003, Mechanical, Bioadhesive Strength and Biological Evaluations of Chitosan Films for Wound Dressing, J. Pharm. Pharmaceut. Sci. 3(3):303–311.Google Scholar
  117. Tapia-Blácido D., 2006, Biofilms Based In Amaranth Flour, PhD. Thesis, School of Food Engineering, Unicamp, Brazil.Google Scholar
  118. Tapia-Blacido, D., Sobral, P.J., and Menegalli F.C., 2005a, Development and Characterization of Biofilms Based on Amaranth Flour (Amaranthus caudatus), J. Food Eng. 67:215–223.Google Scholar
  119. Tapia-Blacido, D., Sobral, P.J., and Menegalli F. C., 2005b, Effect of Drying Temperature and Relative Humidity on Mechanical Properties of Amaranth Flour Films Plasticized with Glycerol, Braz. J. Chem. Eng. 22:249–256.Google Scholar
  120. Tharanathan, N.R. and Kittur S.F., 2003, Chitin—The Undisputed Biomolecule of Great Potential, Crit. Rev. Food Sci. 43:61–83.Google Scholar
  121. Thomazine, M., Carvalho, R.A., and Sobral P.I.A., 2005a. Physical Properties of Gelatin Films Plasticized by Blends of Glycerol and Sorbitol, J. Food Sci. 70(3):172–176.Google Scholar
  122. Thomazhine, M., Carvalho, R., Habitante, A.M., Sobral, P., Montero P., and Gómez-Guillén M.C., 2005a, Desarrollo de Películas Comestibles Basadas en Gelatinas de Piel de Fletán, V Iberoamerican Congress on Food Engineering, Puerto Vallarta.Google Scholar
  123. Trezza, T.A., and Krochta J.M., 2000, Color Stability of Edible Coatings During Prolonged Storage, J. Food Sci. 65(7):1166–1169.Google Scholar
  124. Turhan, K.N., and Sahbaz F., 2004, Water Vapor Permeability, Tensile Properties and Solubility of Methylcellulose-Based Edible Films, J. Food Eng. 61:459–466.Google Scholar
  125. Vanin, F.M., Sobral, P.J.A., Menegalli, F.C., Carvalho, R.A., and Habitante A.M., 2005, Effects of Plasticizers and Their Concentrations on Thermal and Functional Properties of Gelatin-Based Films, Food Hydrocolloid. 19(5):899–907.Google Scholar
  126. Vermeiren, L., Devlieghere, F., van Beest, M., de Kruijf, N., and Debevere J., 1999, Developments in the Active Packaging of Foods, Trends Food Sci. Technol. 10:77–86.Google Scholar
  127. Wong, D.W.S., Gastineau, F.A., Gregorski, K.S., Tillin, S.J., and Pavlath A.E., 1992, Chitosan Lipid Films: Microstructure and Surface Energy, J. Agric. Food Chem. 40:540–544.Google Scholar
  128. Wu, T., Zivanovic, S., Draughon, F.A., Conway, W.S., and Sams C.E., 2005, Physicochemical Properties and Bioactivity of Fungal Chitin and Chitosan, J. Agric. Food Chem. 53:3888–3894.Google Scholar
  129. Yamauchi, A., and Yamauchi K., 2002, Formation and Properties of Wool Keratin Films and Coatings, in: Protein Based Films and Catings, A. Gennadios (ed.), CRC Press, Boca Raton. pp. 253–274.Google Scholar
  130. Yamauchi, K., Yamauchi, A., Kusunoki, T., Kohda, A., and Konishi Y., 1996, Preparation of Stable Aqueous Solution of Keratins, and Physiochemical and Biodegradational Properties of Films, J. Biomed. Mater. Res. 31:439–444.Google Scholar
  131. Zhou, T., and Regenstein J. M., 2005, Effects of Alkaline and Acid Pretreatments on Alaska Pollock Skin Gelatin Extraction, J. Food Sci. 70(6):392–396.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • P. Sobral
    • 1
  • J. D. De Alvarado
    • 2
  • N. E. Zaritzky
    • 3
  • J. B. Laurindo
    • 4
  • C. Gómez-Guillén
    • 5
  • M. C. Añón
    • 3
  • P. Montero
    • 5
  • G. Denavi
    • 3
  • S. Molina Ortíz
    • 3
  • A. Mauri
    • 3
  • A. Pinotti
    • 3
  • M. García
    • 3
  • M. N. Martino
    • 3
  • R. Carvalho
    • 1
  1. 1.Departamento de Engenharia de AlimentosUniversidade de São PauloBrazil
  2. 2.Facultad de Ciencia e Ingeniería de Alimentos de AmbatoUniversidad Técnica de AmbatoEcuador
  3. 3.Centro de Investigación y Desarrollo en Criotecnología de AlimentosUniversidad NacionalArgentina
  4. 4.Departamento de Engenharia Química e Engenharia de AlimentosUniversidade Federal de Santa CatarinaBrazil
  5. 5.Instituto del FríoConsejo Superior de Investigaciones Científi casSpain

Personalised recommendations