Skip to main content

Emulsifiers in Infant Nutritional Products

  • Chapter

Infant nutritional products are specially formulated milks for babies and young children. These important nutritional products are available in several forms including convenient ready-to-feed liquid products, concentrated liquid products and powders that are reconstituted for consumption. The formation and stabilisation of an oil-in-water (o/w) emulsion is an integral step in the manufacture of all of these products; this is generally achieved by homogenising the oil phase, usually a blend of vegetable oils such as palm, coconut, soybean and sunflower oils, in an aqueous phase consisting mainly of carbohydrate, proteins, minerals and vitamins. The proteins together with low molecular weight food grade emulsifiers form a membrane that stabilises the oil droplets against coalescence.

This review will include some background information on the various types of nutritional products and before describing the role of emulsifiers in infant nutritional products, some background on the various production processes involved will be outlined, with emphasis on emulsion formation and stabilisation. The typical protein sources and low molecular weight emulsifiers available for use in these products will be considered in the context of the regulatory guidelines and restrictions. Finally, the functionality of emulsifiers, both protein and non-protein types, in the formation and stabilisation of emulsions will be discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agboola, S.O. & Dalgleish, D.G. (1996). Enzymatic hydrolysis of milk proteins used for emulsion formation. 1. Kinetics of protein breakdown and storage stability of the emulsions. J. Agric. Food Chem., 44, 3631–3636.

    Article  CAS  Google Scholar 

  • Antipova, A.S., Semenova, M.G., Belyakova, L.E. & Il’in, M.M. (2001). On relationships between molecular structure, interaction and surface behaviour in mixture: small-molecule surfactant + protein. Colloids Surf. B Biointerfaces, 21, 217–230.

    Article  CAS  Google Scholar 

  • Aoki, H., Taneyama, O. & Inami M. (1980). Emulsifying properties of soy proteins: Characteristics of 7S and 11S proteins. J. Food Sci., 45, 534–538.

    Article  CAS  Google Scholar 

  • Arts, T.J.C., Laven, J., Voorst Vader, F. van & Kwaaitaal, T. (1994). Zeta potentials of tristearoylglycerol crystals in olive oil. Colloid Surf. A, Physicochem. Eng. Aspects, 85, 149–158.

    Article  CAS  Google Scholar 

  • Atkinson, P.J., Dickinson, E. Horne, D.S. & Richardson R.M. (1995). Neutron reflectivity of adsorbed n-casein and–lactoglobulin at the air/water interface. J. Chem. Soc. Faraday Trans., 91, 2847–2854.

    Article  CAS  Google Scholar 

  • Barfod, N.M., Krog, N. Larsen, G. & Buchheim, W. (1991). Effects of emulsifiers on protein/fat interaction in ice-cream mix during ageing. 1. Quantitative analyses. Fat Sci. Technol., 93, 24–29.

    CAS  Google Scholar 

  • Boode, K. & Walstra, P. (1993). Kinetics of partial coalescence in oil-in-water emulsions. In, Food Colloids and Polymers: Stability and Mechanical Properties (eds. E. Dickinson & P. Walstra), Royal Soc. Chem., Cambridge, UK, pp. 23–30.

    Google Scholar 

  • Boyd, J.V., Mitchell, J.R., Irons, L., Musselwhite, P.R & Sherman, P. (1973). The mechanical properties of milk protein films spread at the air-water interface. J. Colloid Interface Sci., 45, 478–486.

    Article  CAS  Google Scholar 

  • Britten, M. & Giroux, H.J. (1991). Emulsifying properties of whey protein and casein composite blends. J. Dairy Sci., 74, 3318–3325.

    CAS  Google Scholar 

  • Brooksbank, D.V., Davidson, C.M., Horne, D.S. & Leaver, J. (1993). Influence of electrostatic interactions on B-casein layers adsorbed on polystyrene lattices. J. Chem. Soc. Faraday Trans., 89, 3419–3425.

    Article  CAS  Google Scholar 

  • Brown, E.M., Carroll, R.J., Pfeffer, P.E. & Sampugna, J. (1983). Complex formation in sonicated mixtures of B-lactoglobulin and phosphatidylcholine. Lipids, 18, 111–118.

    Article  CAS  Google Scholar 

  • Brown, E.M., Sampugna, J., Pfeffer, P.E. & Carroll, R.J. (1982). Interaction of phosphatidylcholine with beta-lactoglobulin. Biophys. J., 37, 71–72.

    Article  CAS  Google Scholar 

  • Brun, J.M. & Dalgleish, D.G. (1999). Some effects of heat on the competitive adsorption of caseins and whey proteins in oil-in-water emulsions. Int. Dairy J., 9, 323–327.

    Article  CAS  Google Scholar 

  • Bueschelberger, H-.G. (2004). Lecithins. In, Emulsifiers in Food Technology (ed. Robert J. Whitehurst), Blackwell Publishing Ltd., Oxford, UK, pp. 1–39.

    Chapter  Google Scholar 

  • Canadian Food & Drugs Act (2003). Part B. Food and Drug Regulations. Division 24. Foods for special dietary use. Department of Health, Ottawa, Ontario, Canada.

    Google Scholar 

  • Carver, J.D., Wu, P.Y., Hall, R.T., Ziegler, E.E., Sosa, R., Jacobs, J., Baggs, G., Auestad, N. & Lloyd, B. (2001). Growth of preterm infants fed nutrient-enriched or term formula after hospital discharge. Paediatrics, 107, 683–689.

    Article  CAS  Google Scholar 

  • Chobert, J.M., Bertrand-Harb, C. & Nicolas, M.G. (1988a). Solubility and emulsifying properties of caseins and whey proteins modified enzymatically by trypsin. J. Agric. Food Chem., 36, 883–892.

    Article  CAS  Google Scholar 

  • Chobert, J.M., Sitohy, M.Z. & Whitaker, J.R. (1988b). Solubility and emulsifying properties of caseins modified enzymatically by Staphylococcus aureus V8 protease. J. Agric. Food Chem., 36, 220–224.

    Article  CAS  Google Scholar 

  • Codex Alimentarius Commission (1981). Codex standard for infant formula, Codex Stan. 72–1981, as amended in 1983, 1985, 1987 and 1997. Food and Agriculture Organization of the United Nations and World Health Organization, Rome, Italy.

    Google Scholar 

  • Commission of the European Communities (1991). Commission directive of 14 May 1991 on infant formulae and follow-on formulae. 92/321/EEC. (Last consolidated 25 May 1999). Official J. Eur. Comm., L175, 35–49.

    Google Scholar 

  • Commission of the European Communities (1999). Commission directive of 25 March 1999 on Dietary Foods for Special Medical Purposes. 1999/21/EC. Official J. Eur. Comm., L91/29, 29–36.

    Google Scholar 

  • Courthaudon, J.-L., Dickinson, E. & Christie, W.W. (1991). Competitive adsorption of lecithin and C-casein in oil-in-water emulsions. J. Agric. Food Chem., 39, 1365–1368.

    Article  CAS  Google Scholar 

  • Courthaudon, J.-L., Girardet, J.M., Campagne, S., Rouhier, L.M. & Campagne, S., Linden, G. & Lorient, D. (1999). Surface active and emulsifying properties of casein micelles compared to those of sodium caseinate. Int. Dairy J., 9, 411–412.

    Article  CAS  Google Scholar 

  • Dalgleish, D.G. (1993). The sizes and conformations of the proteins in adsorbed layers of individual caseins on lattices and in oil-in-water emulsions. Colloids Surf. B. Biointerfaces, 1, 1–8.

    Article  CAS  Google Scholar 

  • Dalgleish, D.G. (1996). Food emulsions. In, Emulsions and Emulsion Stability (ed. J. Sjöblom), Marcel Dekker Inc, New York, pp. 287–321.

    Google Scholar 

  • Dalgleish, D.G., Goff, H.D., Brun, J.M. & Luan, B. (2002). Exchange reactions between whey proteins and caseins in heated soya oil-in-water emulsion systems—overall aspects of the reaction. Food Hydrocolloids, 16, 303–311.

    Article  CAS  Google Scholar 

  • Das, K.P. & Kinsella, J.E. (1990). Stability of food emulsions: Physicochemical role of protein and nonprotein emulsifiers. Adv. Food Nutr. Res., 34, 81–129.

    Article  CAS  Google Scholar 

  • Davies, E., Dickinson, E. & Bee, R.D. (2000). Shear stability of sodium caseinate emulsions containing monoglyceride and triglyceride crystals. Food Hydrocolloids, 14, 145–153.

    Article  CAS  Google Scholar 

  • Davies, E., Dickinson, E. & Bee, R.D. (2001). Orthokinetic destabilization of emulsions by saturated and unsaturated monoglycerides. Int. Dairy J., 11, 827–836.

    Article  CAS  Google Scholar 

  • Deep, S. & Ahluwalia, J.C. (2001). Interaction of bovine serum albumin with anionic surfactants. Phys. Chem. Chem. Phys., 3, 4583–4591.

    Article  CAS  Google Scholar 

  • de Feijter, J.A., Benjamins, J. & Tamboer, M. (1987). Adsorption displacement of proteins by surfactants in oil-in-water emulsions. Colloids Surf., 27, 243–266.

    Google Scholar 

  • Dickinson, E. (1993). Proteins in solution and at interfaces. In, Interactions of Surfactants with Polymers and Proteins (eds. E.D. Goddard & K.P. Ananthapadmanabhan), CRC Press, Boca Raton, FL., p 295.

    Google Scholar 

  • Dickinson, E. (1995). Recent trends in food colloids research. In, Food Macromolecules and Colloids (eds. E. Dickinson & D. Lorient), Royal Soc. Chem., Cambridge, United Kingdom, p 1.

    Chapter  Google Scholar 

  • Dickinson, E. (1997). Properties of emulsions stabilized with milk proteins: overview of some recent developments. J. Dairy Sci., 80, 2607–2619.

    Article  CAS  Google Scholar 

  • Dickinson, E. (2001). Milk protein interfacial layers and the relationship to emulsion stability and rheology. Colloids Surf. B. Biointerfaces, 20, 197–210.

    Article  CAS  Google Scholar 

  • Dickinson, E. (2004). Properties of emulsions stabilized with milk proteins: Overview of some recent developments. J. Dairy Sci., 80, 2607–2619.

    Article  Google Scholar 

  • Dickinson, E., & Gelin, J.-L. (1992). Influence of emulsifier on competitive adsorption of Ds-casein and–lactoglobulin in oil-in-water emulsions. Colloids Surf. B. Biointerfaces, 63, 329–335.

    CAS  Google Scholar 

  • Dickinson, E., Golding, M. &. Povey, M.J.W. (1997). Creaming and flocculation of oil-in-water emulsions containing sodium caseinate. J. Colloid Interface Sci., 185, 515–529.

    Article  CAS  Google Scholar 

  • Dickinson, E., Horne, D.S. & Richardson, R.M. (1993a). Neutron reflectivity study of the competitive adsorption of D-casein and water-soluble surfactant at the planar air-water interface. Food Hydrocolloids, 7, 497–505.

    Article  CAS  Google Scholar 

  • Dickinson, E. & Iveson, G. (1993). Absorbed films of b-lactoglobulin and lecithin at the hydrocarbon-water and triglyceride-water interfaces. Food Hydrocolloids, 6, 533–541.

    Article  CAS  Google Scholar 

  • Dickinson, E. & Matsumura, Y. (1991). Time-dependent polymerisation of b-lactoglobulin through disulphide bonds at the oil-water interface in emulsions. Int. J. Biol. Macromol., 13, 26–30.

    Article  CAS  Google Scholar 

  • Dickinson, E. & Matsumura, Y. (1994). Proteins at liquid interfaces: Role of the molten globule state. Colloids Surf. B. Biointerfaces, 3, 1–17.

    Article  CAS  Google Scholar 

  • Dickinson, E., Mauffret, A. Rolfe, S.E & Woskett, C.M. (1989a). Adsorption at interfaces in dairy systems. J. Soc. Dairy Technol., 42, 18–22.

    Google Scholar 

  • Dickinson, E., Narhan, S.K. & Stainsby, G. (1989b). Stability of cream liqueurs containing low-molecular-weight surfactants. J. Food Sci., 54, 77–81.

    Article  CAS  Google Scholar 

  • Dickinson, E., Owusu, R.K., Tan, S. & Williams, A. (1993b). Oil-soluble surfactants have little effect on competitive adsorption of alpha-lactalbumin and beta-lactoglobulin in emulsions, J. Food Sci., 58, 295–298.

    Article  CAS  Google Scholar 

  • Dickinson, E., Owusu, R.K. & Williams, A. (1993c). Orthokinetic destabilization of a protein-stabilized emulsion by a water-soluble surfactant. J. Chem. Soc. Faraday Trans., 89, 865–66.

    Article  CAS  Google Scholar 

  • Dickinson, E., Rolfe, S.E. & Dalgleish, D.G. (1988). Competitive adsorption of ps1-casein and–casein in oil-in-water emulsions. Food Hydrocolloids, 2, 397–405.

    Article  CAS  Google Scholar 

  • Dickinson, E. & Tanai, S. (1992). Protein displacement from the emulsion droplet surface by oil-soluble and water-soluble surfactants. J. Agric. Food Chem., 40, 179–183.

    Article  CAS  Google Scholar 

  • Doxastakis G. & Sherman, P. (1984). The interaction of sodium caseinate with monoglyceride and diglyceride at the oil-water interface and its effect on interfacial rheological properties. Colloid Polym. Sci., 264, 254–259.

    Article  Google Scholar 

  • Eaglesham, A., Herrington, T.M. & Penfold, J. (1992). A neutron reflectivity study of a spread monolayer of bovine serum albumin. Colloids Surf., 65, 9.

    Article  CAS  Google Scholar 

  • Euston, S.E., Singh, H., Munro, P.A. & Dalgleish, D.G. (1995). Competitive adsorption between sodium caseinate and oil-soluble and water-soluble surfactants in oil-in-water emulsions. J. Food Sci., 60, 1124–1131.

    Article  CAS  Google Scholar 

  • Euston, S.R. (1997). Emulsifiers in Dairy Products and Dairy Substitutes. In, Food Emulsifiers and their Applications (eds. G.L. Hassenheutl & R. Hartel), Chapman & Hall, New York, pp. 173–210.

    Google Scholar 

  • Euston, S.R. & Hirst, R.L. (1999). Comparison of the concentration-dependent emulsifying properties of protein products containing aggregated and non-aggregated milk protein. Int. Dairy J., 9, 693–701.

    Article  CAS  Google Scholar 

  • Euston, S.R. & Hirst, R.L. (2000). The emulsifying properties of commercial milk protein products in simple oil-in-water emulsions and in a model food system. J. Food Sci., 65, 934–940.

    Article  CAS  Google Scholar 

  • Euston, S.R., Finnigan, S.R. & Hirst, R.L. (2001a). Aggregation kinetics of heated whey protein-stabilized emulsions: effect of low-molecular weight emulsifiers. Food Hydrocolloids, 15, 253–262.

    Article  CAS  Google Scholar 

  • Euston, S.R., Finnigan, S.R. & Hirst, R.L. (2001b). Heat-induced destabilization of oil-in-water emulsions formed from hydrolyzed whey protein. J. Agric. Food Chem., 49, 5576–5583.

    Article  CAS  Google Scholar 

  • Faergemand, M. & Krog, N. (2003). Using emulsifiers to improve food texture. In, Texture in Foods, Volume 1: Semi-Solid Foods (ed. B.M. McKenna), CRC Press, Boca Raton, FL. Chapter 10.

    Google Scholar 

  • Fang, Y., & Dalgleish, D.G. (1993). Casein adsorption on the surfaces of oil-in-water emulsions modified by lecithin. Colloids Surf., 1, 357–364.

    Article  CAS  Google Scholar 

  • Fang, Y. & Dalgleish, D.G. (1996a). Comparative effects of three different phosphatidylcholines on casein-stabilized oil-in-water emulsions. J. Am. Oil Chem. Soc., 73, 437–442.

    Article  CAS  Google Scholar 

  • Fang, Y. & Dalgleish, D.G. (1996b). Competitive adsorption between dioleoylphosphatidylcholine and sodium caseinate on oil-water interfaces. J. Agric. Food Chem., 44, 59–64.

    Article  CAS  Google Scholar 

  • Fontecha, J. & Swaisgood, H. (1995). Interaction of sucrose esters with skim milk proteins as characterised by size-exclusion chromatography. J. Dairy Sci., 78, 2660–2665.

    Article  CAS  Google Scholar 

  • Fontecha, J. & Swaisgood, H. (1994). Interaction of sucrose esters with skim milk proteins as characterised by affinity chromatography. J. Dairy Sci., 77, 3545–3551.

    Article  CAS  Google Scholar 

  • Friberg, S.E. & Solans, C. (1986). Surfactant association structures and the stability of emulsions and foams. Langmuir, 2, 121–126.

    Article  CAS  Google Scholar 

  • FSANZ (2000). Australia and New Zealand Food Standards Code. Standard 2.9.1. Infant formula products. FSANZ, Canberra, Australia.

    Google Scholar 

  • Gaupp, R. & Adams, W. (2004). Acid esters of mono- and diglycerides. In, Emulsifiers in Food Technology (ed. Robert J. Whitehurst), Blackwell Publishing Ltd., pp. 59–85.

    Google Scholar 

  • Gelin, J.-L., Poyen, L. Courthaudon, J.-L. Le Meste, M. & Lorient, D. (1994). Structural changes in oil-in-water emulsions during the manufacture of ice cream. Food Hydrocolloids, 8, 299–308.

    Article  CAS  Google Scholar 

  • Giroux, H.J. & Britten, M. (2004). Heat treatment of whey proteins in the presence of anionic surfactants. Food Hydrocolloids, 18, 685–692.

    Article  CAS  Google Scholar 

  • Haque, Z.U. & Mozaffar, Z. (1992). Casein hydrolysate. II. Functional properties of peptides. Food Hydrocolloids, 5, 559–571.

    Article  CAS  Google Scholar 

  • Hardy, E.E., Sweetsur, A.W.M., West, I.G. & Muir, D.D. (1985). Heat stability of concentrated milk: enhancement of initial heat stability by incorporation of food grade lecithin. Aust. J. Food Technol., 20, 97–105.

    Article  CAS  Google Scholar 

  • Hasenhuettl, G.L. (1997). Overview of food emulsifiers. In, Food Emulsifiers and Their Applications (eds. G.L. Hasenhuettl & R.W. Hartel), Chapman & Hall, New York, NY.

    Google Scholar 

  • Istarova, T.A., Semenova, M.G., Sorokoumova, G.M., Selishcheva, A.A., Belyakova, L.E., Polikarpov, Y.N. & Anokhina, M.S. (2005). Effect of pH on the interactions of sodium caseinate with soy phospholipids in relation to the foaming ability of their mixtures. Food Hydrocolloids, 19, 429–440.

    Article  CAS  Google Scholar 

  • Jimenez-Flores, R., Ye, A. & Singh, H. (2005). Interactions of whey proteins during heat treatment of oil-in-water emulsions formed with whey protein isolate and hydroxylated lecithin. J. Agric. Food Chem., 53, 4213–4219.

    Article  CAS  Google Scholar 

  • Kieseker, F.G. (1983). Recombined dairy products. CSIRO Food Res. Q., 43, 25–37.

    Google Scholar 

  • Korver, O. & Meder, H. (1974). The influence of lysolecithin on the complex formation between beta-lactoglobulin and kappa-casein. J. Dairy Res., 41, 9–17.

    Article  CAS  Google Scholar 

  • Kristensen, A., Nylander T., Paulsson, M. & Carlsson, A. (1997). Calorimetric studies of interactions between K-lactoglobulin and phospholipids in solution. Int. Dairy J., 7, 87–92.

    Article  CAS  Google Scholar 

  • Krog, N. & Larsson, K. (1992). Crystallization at interfaces in food emulsions—A general phenomenon. Fat Sci. Technol., 94, 55–57.

    CAS  Google Scholar 

  • Lajoie, N., Gauthier, S.F. & Pouliot, Y. (2001). Improved storage stability of model infant formula by whey peptides fractions. J. Agric. Food Chem., 49, 1999–2007.

    Article  CAS  Google Scholar 

  • Leaver, J. & Dalgleish, D.G. (1992). Variations in the binding of L−casein to oil-water interfaces detected by trypsin-catalysed hydrolysis. J. Colloid Interface Sci., 149, 49–55.

    Article  CAS  Google Scholar 

  • Leermakers, F.A.M., Atkinson, P.J., Dickinson, E. & Horne, D.S. (1996). Self-consistent-field modelling of adsorbed L-casein: effects of pH and ionic strength on surface coverage and density profile. J. Colloid Interface Sci., 178, 681–693.

    Article  CAS  Google Scholar 

  • Lefèvre, T. & Subirade, M. (2001). Molecular structure and interaction of biopolymers as viewed by Fourier transform infrared spectroscopy: Model studies on L-lactoglobulin. Food Hydrocolloids, 15, 365–376.

    Article  Google Scholar 

  • Lein, E. (2003). Infant formulae with increased concentrations of L-lactalbumin. Am. J. Clin. Nutr. (suppl.), 77, 1555S–1558S.

    Google Scholar 

  • Lucas, A., Fewtrell, M.S., Morley, R. et al. (2001). Randomized trial of nutrient-enriched formula versus standard formula for post discharge preterm infants. Paediatrics, 108, 703–711.

    Article  CAS  Google Scholar 

  • Mahmoud, M.I. (1987). Enteral nutritional hypoallergenic formula. US Patent 4, 670, 268.

    Google Scholar 

  • Master, K. (2002). Spray Drying inPractice. SprayDryConsult International ApS, Charlottenlund, Denmark Publishers.

    Google Scholar 

  • McClements, D.J. (2004). Protein stabilized emulsions. Curr. Opin. Colloid Interface Sci., 9, 305–313.

    Article  CAS  Google Scholar 

  • McClements, D.J. (2005). Food Emulsions: Principles, Practice and Techniques—2nd edition. (ed. D.J. McClements), CRC Press, Boca Raton, FL, Chapter 4.

    Google Scholar 

  • McCrae, C.H. & Muir, D.D. (1992). The influence of phospholipid classes of crude lecithin on the heat stability of recombined milk. Milchwissenschaft, 47, 755–759.

    CAS  Google Scholar 

  • McSweeney S.L., Mulvihill, D.M. & O’Callaghan, D.M. (2004). The influence of pH on the heat-induced aggregation of model milk protein ingredient systems and model infant formula emulsions stabilized by milk protein ingredients. Food Hydrocolloids, 18, 109–125.

    Article  CAS  Google Scholar 

  • McSweeney, S.L. (2007). Stability of model ready-to feed infant formula emulsions. Ph. D. Thesis, National University of Ireland, Cork.

    Google Scholar 

  • McSweeney, S.L., Healy, R. & Mulvihill, D.M. (in press). Effect of lecithin and monoglycerides on the heat stability of a model infant formula emulsion. Food Hydrocolloids, Available online 7 May 2007.

    Google Scholar 

  • Mellema, M. & Isenbart, J.G. (2004). Effect of acidification and heating on the rheological properties of oil-water interfaces with adsorbed milk proteins. J. Dairy Sci., 87, 2769–2778.

    Article  CAS  Google Scholar 

  • Mitidieri, F.E. & Wagner, J.R. (2002). Coalescence of o/w emulsions stabilized by whey and isolate soybean proteins. Influence of thermal denaturation, salt addition and competitive interfacial adsorption. Food Res. Int., 35, 547–557.

    Article  CAS  Google Scholar 

  • Miura, S., Yamamoto, A. & Sato, K. (2002). Effect of monoacylglycerols on the stability of model cream using palm oil. Eur. J. Lipid Sci. Technol., 104, 819–824.

    Article  CAS  Google Scholar 

  • Moonen, H. & Bas, H. (2004). Mono- and diglycerides. In, Emulsifiers in Food Technology (ed. R.J. Whitehurst). Blackwell Publishing Ltd., Oxford, UK, pp. 40–58.

    Chapter  Google Scholar 

  • Mulvihill, D.M. & Murphy, P.C. (1991). Surface active and emulsifying properties of caseins/caseinates as influenced by state of aggregation. Int. Dairy J., 1, 13–37.

    Article  CAS  Google Scholar 

  • Nelen, B.A.P. & Cooper, J.M. (2004). Sucrose esters. In, Emulsifiers in Food Technology (ed. R. J.Whitehurst), Blackwell Publishing Ltd., Oxford, UK, pp. 131–158.

    Chapter  Google Scholar 

  • O’Callaghan, D.M. & Wallingford, J.C. (2002). Infant formulae—New developments. In, Encyclopaedia of Dairy Science (eds. H. Roginshki, J. Fuquay & P.F. Fox), Academic Press, Elsevier Science, London., Vol. 3, pp. 1384–1392.

    Google Scholar 

  • Olson, D.W., White, C.H. & Richter R.L. (2004). Effect of pressure and fat content on particle sizes in microfluidized milk. J. Dairy Sci., 87, 3217–3223.

    Article  CAS  Google Scholar 

  • Oortwijn, H., & Walstra, P. (1979). Membranes of recombined fat globules. 2. Composition. Neth. Milk Dairy J., 33, 134–154.

    CAS  Google Scholar 

  • Oortwijn, H. & Walstra, P. (1982). Membranes of recombined fat globules. 4. Effects on properties of recombined milks. Neth. Milk Dairy J., 36, 279–290.

    CAS  Google Scholar 

  • Palazolo, G.G., Mitidieri, F.E. & Wagner, J.R. (2003). Relationship between interfacial behaviour of native and denatured soybean isolates and microstructure and coalescence of oil-in-water emulsions—Effect of salt and protein concentration. Food Sci. Tech. Int., 9, 409–11.

    Article  CAS  Google Scholar 

  • Pelan, B.M.C., Watts, K.M., Campbell, I.J. & Lips, A. (1997). On the stability of aerated milk protein emulsions in the presence of small-molecule surfactants. In, Food Colloids: Proteins, Lipids and Polysaccharides (eds. E. Dickinson & B. Bergenstahl), Royal Soc. Chem., Cambridge, United Kingdom, p 55.

    Google Scholar 

  • Pisecky (1997). Handbook of Milk Powder Manufacture. Niro A/S Copenhagen, Denmark.

    Google Scholar 

  • Rahali, V., Chobert, J.M., Haertle, T. & Gueguen, J. (2000). Emulsification of chemical and enzymatic hydrolysates of R-lactoglobulin: characterization of the peptides adsorbed at the interface. Nahrung, 44, 89–95.

    Article  CAS  Google Scholar 

  • Rydhag, L. & Wilton, I. (1981). The function of phospholipids of soybean lecithin in emulsions. J. Am. Oil Chem. Soc., 58, 830–837.

    Article  CAS  Google Scholar 

  • Sarker, D.K., Wilde, P.J. & Clark, D.C. 1995. Control of surfactant-induced destabilization of foams through polyphenol-mediated protein-protein interactions. J. Agric. Food Chem., 43, 295–300.

    Article  CAS  Google Scholar 

  • Scientific Committee for Food, European Commission (1994). Opinion on certain additives for use in infant formulae, follow-on formulae and weaning foods. Reports of the Scientific Committee for Food (32nd series). Office for Official Publications of the European Communities, Luxembourg.

    Google Scholar 

  • Sharma, R. & Dalgleish, D.G. (1993). Interactions between milk serum proteins and synthetic fat globule membrane during heating of homogenized whole milk. J. Agric. Food Chem., 41, 1407–1412.

    Article  CAS  Google Scholar 

  • Sharma, R. & Singh, H. (1998). Adsorption behaviour of commercial milk protein and milk powder products in low-fat emulsions. Milchwissenschaft, 53, 373–377.

    CAS  Google Scholar 

  • Singh, H., Sharma, R. & Tokley, R.P. (1992). Influence of incorporation of soya lecithin into skim milk powder on the heat stability of recombined evaporated milk. Aust. J. Dairy Technol., 47, 33–37.

    CAS  Google Scholar 

  • Sjollema, A. (1987). Recombination of milk and dairy ingredients into milk, cream, condensed milk and evaporated milk. In, Milk—The Vital Force, Reidel Publishing, Boston, MA, pp. 251–257.

    Google Scholar 

  • Slattery, H. & Fitzgerald, R.J. (1998). Functional properties and bitterness of sodium caseinate hydrolysates prepared with a Bacillus proteinase. J. Food Sci., 63, 418–422.

    Article  CAS  Google Scholar 

  • Sliwinski, E.L., Lavrijsen, B.W.M., Vollenbroek, J.M., van der Stege, H.J., van Boekel, M.A.J.S. & Wouters, J.T.M. (2003). Effects of spray drying on physicochemical properties of milk protein-stabilised emulsions. J. Colloids Surf. B Biointerfaces, 31, 219–229.

    Article  CAS  Google Scholar 

  • Sourdet, S., Relkin, P., Fosseux, P.Y. & Aubry, V. (2002). Composition of fat protein layer in complex food emulsions at various weight ratios of casein-to-whey proteins. Lait, 82, 567–578.

    Article  CAS  Google Scholar 

  • Srinivasan, M., Singh, H. & Munro, P.A. (1996). Sodium caseinate-stabilized emulsions: Factors affecting coverage and composition of surface proteins. J. Agric. Food Chem., 44, 3807–3811.

    Article  CAS  Google Scholar 

  • Stauffer C.E. (1999). Emulsifiers, Eagan Press Handbook, St. Paul, MA, pp. 551–553.

    Google Scholar 

  • Sunder, A., Scherze, I. & Muschiolik, G. (2001). Physico-chemical characteristics of oil-in-water emulsions based ion whey protein-phospholipid mixtures. Colloids Surf. B Biointerfaces, 21, 75–85.

    Article  CAS  Google Scholar 

  • Tesch, S., Gerhards, C. & Schubert H. (2002). Stabilization of emulsions by OSA starches. J. Food Eng., 54, 167–174.

    Article  Google Scholar 

  • Tirok, S., Scherze, I. & Muschiolik, G. (2001). Behaviour of formula emulsions containing hydrolysed whey protein and various lecithins. Colloids Surf. B Biointerfaces, 21, 149–162.

    Article  CAS  Google Scholar 

  • Van der Meeren, P., El-Bakry, M., Neirynck, N. & Noppe, P. (2005). Influence of hydrolyzed lecithin on protein adsorption and heat stability of a sterilised coffee cream simulant. Int. Dairy J., 15, 1235–1243.

    Article  CAS  Google Scholar 

  • Van der Ven, C., Gruppen, H., de Bont, D.B.A. & Voragen, A.G.J. (2001). Emulsion properties of casein and whey protein hydrolysates and the relation with other hydrolysate characteristics. J. Agric. Food Chem., 49, 5005–5012.

    Article  CAS  Google Scholar 

  • van Niewenhuyzen, W. & Szuhaj, B.F. (1998). Effects of lecithins and proteins on the stability of emulsions. Fett/Lipid, 100, 282–291.

    Article  Google Scholar 

  • Viswanathan, A. (1999). Effect of degree of substitution of octenyl Succinate starch on the emulsification activity on different oil phases. J. Polym. Environ., 7, 191–196.

    Article  CAS  Google Scholar 

  • Vojdani, F. & Whitaker, J.R. (1994). Chemical and enzymatic modification of proteins for improved functionality. In, Protein functionality in food systems (eds. N.S. Hettiarachy & G.R. Ziegler), Marcel Dekker, New York, pp. 261–310.

    Google Scholar 

  • Walstra, P., Guerts, T.J., Noomen, A. & van Boekel, M.A.J.S. (1999). Dairy Technology. Marcel Dekker, New York.

    Google Scholar 

  • Yamamoto, Y. & Araki, M. (1997). Effects of lecithin addition in oil or water phase on the stability of emulsions made with whey proteins. Biosci. Biotechnol. Biochem., 61, 1791–1795.

    Article  CAS  Google Scholar 

  • Yamauchi, K., Shimizu, M. & Kamiya, T. (1980). Emulsifying properties of whey protein. J. Food Sci., 45, 1237–1242.

    Article  CAS  Google Scholar 

  • Zadow, J.G. (1982). Recombined milks and creams. Int. Dairy Fed. Bull., 142, 33–46.

    Google Scholar 

  • Zielinski, R.J. (1997). Synthesis and composition of food-grade emulsifiers. In, Food Emulsifiers and their Application, (eds. G.L. Hasenhuettl & R.W. Hartel), Chapman & Hall, New York, NY, pp. 11–38.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

McSweeney, S.L. (2008). Emulsifiers in Infant Nutritional Products. In: Hasenhuettl, G.L., Hartel, R.W. (eds) Food Emulsifiers and Their Applications. Springer, New York, NY. https://doi.org/10.1007/978-0-387-75284-6_8

Download citation

Publish with us

Policies and ethics