Skip to main content

Emulsifiers in Dairy Products and Dairy Substitutes

  • Chapter
Food Emulsifiers and Their Applications

Bovine milk has been an important source of food for human beings for thousands of years. Not only is milk a very nutritious food in its own right, but it is also a very versatile starting point for many other dairy products.

Milk is a complex food emulsion and colloidal sol. Table 7.1 gives the composition of whole cow’s milk. The emulsion is composed of fat droplets dispersed in an aqueous phase containing protein. The protein is in the form of both casein micelles, which are themselves colloidal particles, and free in solution as whey protein. A considerable reserve of knowledge has been assembled on the structure and properties of milk proteins (Swaisgood, 1992). The fat droplets are stabilized by an adsorbed layer of protein and phospholipid called the ‘milk fat globule membrane’ (MFGM), which is distinct from the aqueous phase protein (Walstra & Jenness, 1984). The average composition of the MFGM has been estimated to be about 48% protein, 33% phospholipid, and 11% water, with the remainder made up of other minor lipid components (Walstra & Jenness, 1984). The phospholipid fraction of the membrane is composed of lecithin, phosphatidyl ethanolamine, phosphatidyl serine, phosphatidyl inositide, plasmalogens and sphingomyelin. Phospholipids are important food emulsifiers in their own right. The contribution that they make to the stability of the milk fat globule is not well understood, but their use as food-grade emulsifiers has been the subject of extensive fundamental research (Courthaudon et al., 1991; Dickinson et al., 1993a; Dickinson & Iveson, 1993).

To control the structure and stability of these products, the manufacturer can add a range of permitted additives that can be either naturally occurring or artificial. One of the most versatile of these additives are the low molecular weight emulsifiers.

In the following pages, the major emulsifier-containing dairy and imitation dairy products will be reviewed. A brief description of their production will be given where relevant, with emphasis on the role that emulsifiers play in the formation and stability of the product.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrahamson, K., Frennborn, P., Dejmek, P. & Buchheim, W. (1988). Effects of homogenization and heating conditions on physico-chemical properties of coffee cream, Milchwissenschaft, 43, 762–765.

    Google Scholar 

  • Anderson, M. & Brooker, B.E. (1988). Dairy foams, in Advances in Food Emulsions and Foams (eds. E. Dickinson & G. Stainsby), Elsevier, London, pp. 221–253.

    Google Scholar 

  • Anderson, M., Brooker, B.E., Cawston, T.C. & Cheeseman, G.C. (1977). Changes during storage in stability and composition of ultra-heat-treated aseptically-packed cream of 18% fat content, Journal of Dairy Research, 44, 111–123.

    CAS  Google Scholar 

  • Arbuckle, W.S. (1986). Ice Cream, 4th ed., AVI, Westport, CT.

    Google Scholar 

  • Banks, W. & Muir, D.D. (1988). Stability of alcohol containing emulsions, in Advances in Food Emulsions and Foams (eds. E. Dickinson & G. Stainsby), Elsevier, London, pp. 257–283.

    Google Scholar 

  • Banks, W. & Wilson, A.G. (1981). The formulation of cream-based liqueurs, Milk Industry, 83, 16–18.

    Google Scholar 

  • Barfod, N.M. & Krog, N. (1987). Destabilization and fat crystallization of whippable emulsions (toppings) studied by pulsed NMR, Journal of the American Oil Chemists Society, 64, 112–119.

    CAS  Google Scholar 

  • Barfod, N.M., Krog, N., Larsen, G. & Bucheim, W. (1991). Effects of emulsifiers on protein-fat mixtures in ice-cream mix during ageing I: Quantitative analyses, Fat Science and Technology, 93, 24–29.

    CAS  Google Scholar 

  • Barratt, M.D. & Rayner, L. (1972). Lysolecithin-casein interactions. I. Nuclear magnetic resonance and spin label studies, Biochimica et Biophysica Acta, 255, 974–980.

    CAS  Google Scholar 

  • Bergenstahl, B. et al. (1992). Adsorption structures in emulsions, in Emulsions–A Fundamental and Practical Approach (ed. J. Sjoblom), NATO ASI Series C, 363, 51–60.

    Google Scholar 

  • Berger, K.G. (1990). Ice cream, in Food Emulsions (eds. K. Larsson & S. Friberg), Marcel Dekker, New York, pp. 367–444.

    Google Scholar 

  • Beuchat, L.R. (1980). Comparison of anti-Vibrio activities of potassium sorbate, sodium benzoate and glycerol and sucrose esters of fatty acids, Applied and Environmental Microbiology, 39, 1178–1182.

    CAS  Google Scholar 

  • Boode, K. (1992). Partial Coalescence in Oil-in-Water Emulsions, PhD Thesis, Wageningen Agricultural University, The Netherlands.

    Google Scholar 

  • Boode, K. & Walstra, P. (1993). Kinetics of partial coalescence in oil-in-water emulsions, in Food Colloids and Polymers: Stability and Mechanical Properties (eds. E. Dickinson & P. Walstra), Royal Society of Chemistry, London, pp. 23–30.

    Google Scholar 

  • Bos M., Nylander, T., Arnebrant, T. & Clark, D.C., (1997). Protein/emulsifier interactions, in Food Emulsifiers and Their Applications (eds. G.L. Hasenheuttl & R.W. Hartel), Chapman Hall, New York. pp. 95–146.

    Google Scholar 

  • Botcher, S.R. & Foegeding, E.A. (1994). Whey protein gels: Fracture stress and strain and related microstructural properties, Food Hydrocolloids, 8, 113–123.

    Google Scholar 

  • Bowland, E.L. & Foegeding, E.A. (1995). Effects of anions on thermally induced whey protein isolate gels, Food Hydrocolloids, 9, 47–56.

    CAS  Google Scholar 

  • Bowland, E.L., Foegeding, E.A. & Hamman, D. (1995). Rheological analysis of anion-induced matrix transformations in thermally induced whey protein isolate gels, Food Hydrocolloids, 9, 57–64.

    CAS  Google Scholar 

  • Bucheim, W. (1986). Membranes of milk fat globules—ultrastructural, biochemical and technological aspects, Kieler Milchwirtschaftliche Forschungsberichte, 38, 227–246.

    Google Scholar 

  • Bucheim, W., Barfod, N.M. & Krog, N. (1985). Relation between microstructure, destabilization phenomena and rheological properties of whippable emulsions, Food Microstructure, 4, 221–232.

    Google Scholar 

  • Buck, J.S., Walker, C.E. & Pierce, M.M. (1986). Evaluation of sucrose esters in ice cream, Journal of Food Science, 51, 489–493.

    CAS  Google Scholar 

  • Bullin, S., Dickinson, E., Impey, S.J., Narhan, S.K. & Stainsby, G. (1988). Stability aspects of casein-containing emulsions: Effect of added alcohol or dextran, in Gums & Stabilizers for the Food Industry (eds. G.O. Phillips et al.), IRL Press, Oxford, Vol. 4, pp. 337–345.

    Google Scholar 

  • Burgaud, I. & Dickinson, E. (1990). Emulsifying effects of food macromolecules in presence of ethanol, Journal of Food Science, 55, 875–876.

    CAS  Google Scholar 

  • Caric, M., Gantar, M. & Kalab, M. (1985). Effects of emulsifying agents on the microstructure and other characteristics of process cheeses—a review, Food Microstructure, 4, 297–312.

    CAS  Google Scholar 

  • Chanamai, R. & McClements, D.J. (2001). Prediction of emulsion colour from droplet characteristics: Monodisperse oil-in-water emulsions, Food Hydrocolloids, 15, 83–92.

    CAS  Google Scholar 

  • Chantrapornchai, W., Clydesdale, F. & McClements D.J. (1998). Influence of droplet size and concentration on the color of oil-in-water emulsions, Journal of Agriculture and Food Chemistry, 46, 2914–2920.

    CAS  Google Scholar 

  • Chantrapornchai, W., Clydesdale, F. & McClements D.J. (1999a). Theoretical and experimental study of spectra reflectance and colour of concentrated oil-in-water emulsions, Journal of Colloid and Interface Science, 218, 324–330.

    CAS  Google Scholar 

  • Chantrapornchai, W., Clydesdale, F. & McClements D.J. (1999b). Influence of droplet characteristics on the optical properties of coloured oil-in-water emulsions, Colloids and Surfaces A, 155, 373–382.

    CAS  Google Scholar 

  • Chantrapornchai, W., Clydesdale, F. & McClements D.J. (2001a). Influence of flocculation on optical properties of emulsions, Journal of Food Science, 66, 464–469.

    CAS  Google Scholar 

  • Chantrapornchai, W., Clydesdale, F. & McClements D.J. (2001b). Influence of relative reflective index on optical properties of emulsions, Food Research International, 34, 827–835.

    CAS  Google Scholar 

  • Chen, J.S., Dickinson, E., & Iveson, G. (1993). Interfacial interactions, competitive adsorption and emulsion stability, Food Structure, 12, 135–146.

    CAS  Google Scholar 

  • Chen, J. & Dickinson, E. (1999). Effect of monoglycerides and diglycerol-esters on viscoelasticity of heat-set whey protein emulsion gels, International Journal of Food Science and Technology, 34, 493–501.

    CAS  Google Scholar 

  • Clark, D.C., Wilde, P.J., Wilson, D.R. & Wustneck, R. (1992). The interaction of sucrose esters with β-lactoglobulin and–casein from bovine milk, Food Hydrocolloids, 6, 173–186.

    CAS  Google Scholar 

  • Clarke C. (2005). The Science of Ice Cream. Royal Society of Chemistry, Cambridge, UK.

    Google Scholar 

  • Conley, A.J. & Kabara, J.J. (1973). Antimicrobial action of esters of polyhydric alcohols, Antimicrobial Agents Chemotherapy, 4, 501–506.

    CAS  Google Scholar 

  • Cordle, C.T. (1994). Control of food allergies using protein hydrolysates. Food Technology, 48(10), 72–76.

    CAS  Google Scholar 

  • Courthaudon, J.-L., Dickinson, E. & Christie, W.W. (1991). Competitive adsorption of lecithin and β-casein in oil-in-water emulsions, Journal of Agriculture and Food Chemistry, 39, 1365–1368.

    CAS  Google Scholar 

  • Creamer, L.K. (1995). Effect of sodium dodecyl sulphate and palmitic acid on the equilibrium unfolding of bovine o-lactoglobulin, Biochemistry, 34, 7170–7176.

    CAS  Google Scholar 

  • Cruijsen, J.M.M., Van Boekel, M.A.J.S. & Walstra, P. (1994). Effect of malto-dextrins on the heat-stability of caseinate emulsions, Netherlands Milk and Dairy Journal, 48, 177–180.

    CAS  Google Scholar 

  • Darling, D.F. (1982). Recent advances in the destabilization of dairy emulsions, Journal of Dairy Research, 45, 197–208.

    Google Scholar 

  • Darling, D.F. & Butcher, D.W. (1978). Milk fat globule in homogenized cream, Journal of Dairy Research, 45, 197–208.

    CAS  Google Scholar 

  • Darling, D.F. & Birkett, R.J. (1987). Food colloids in practice, in Food Emulsions and Foams (ed. E. Dickinson), Royal Society of Chemistry, London, pp. 1–29.

    Google Scholar 

  • Davies, E., Dickinson, E. & Bee, R.D. (2000). Shear stability of sodium caseinate emulsions containing monoglyceride and triglyceride crystals, Food Hydrocolloids, 14, 145–153.

    CAS  Google Scholar 

  • Davies, E., Dickinson, E. & Bee, R.D. (2001). Orthokinetic destabilization of emulsions by saturated and unsaturated monoglycerides, International Dairy Journal, 11, 827–836.

    CAS  Google Scholar 

  • Dickinson, E. (1986). Mixed proteinaceous emulsifiers: Review of competitive protein adsorption and the relationship to food colloid stabilization, Food Hydrocolloids, 1, 3–23.

    CAS  Google Scholar 

  • Dickinson, E. (1992). Structure and composition of adsorbed protein layers and the relationship to emulsion stability, Journal of the Chemical Society Faraday Transactions, 889, 2973–2983.

    Google Scholar 

  • Dickinson, E. (1993). Protein-polysaccharide interactions in food colloids, in Food Colloids and Polymers: Stability and Mechanical Properties (eds. E. Dickinson and P. Walstra), Royal Society of Chemistry, London, pp. 77–93.

    Google Scholar 

  • Dickinson, E. & Euston, S.R. (1990). Stability of food emulsions containing both protein and polysaccharide, in Food Polymers, Gels and Colloids (ed. E. Dickinson), Royal Society of Chemistry, London, pp. 132–146.

    Google Scholar 

  • Dickinson, E. & Hong, S.T. Influence of water-soluble nonionic emulsifier on the rheology of heat-set protein-stabilized emulsion gels. Journal of Agriculture and Food Chemistry, 43, 2560–2566.

    Google Scholar 

  • Dickinson, E. & Iveson, G. (1993). Adsorbed films of D-lactoglobulin + lecithin at the hydrocarbon-water and the triglyceride-water interfaces, Food Hydrocolloids, 6, 533–541.

    CAS  Google Scholar 

  • Dickinson, E. & McClements, D.J. (1995). Advances in Food Colloids. Blackie Academic & Professional, Glasgow, pp. 18–23.

    Google Scholar 

  • Dickinson, E. & Stainsby, G. (1982). Colloids in Food. Applied Science Publishers, London.

    Google Scholar 

  • Dickinson, E. & Stainsby, G. (1988). Emulsion stability, in Advances in Food Emulsions and Foams (eds. E. Dickinson and G. Stainsby), Elsevier, London, pp. 1–44.

    Google Scholar 

  • Dickinson, E. & Tanai, S. (1992). Temperature dependence of the displacement of proteins from the emulsion droplet surface by surfactants, Food Hydrocolloids, 6, 163–171.

    CAS  Google Scholar 

  • Dickinson, E. & Williams, A. (1994). Orthokinetic coalescence of protein stabilized emulsions, Colloids and Surfaces A, 88, 317–326.

    CAS  Google Scholar 

  • Dickinson, E. & Woskett, C.M. (1988a). Competitive adsorption between proteins and small molecules in food emulsions, in Food Colloids (eds. R.D. Bee et al.), Royal Society of Chemistry, London, pp. 74–96.

    Google Scholar 

  • Dickinson, E. & Woskett, C.M. (1988b). Effect of alcohol on the adsorption of casein at the oil/water interface, Food Hydrocolloids, 2, 187–195.

    CAS  Google Scholar 

  • Dickinson, E. & Yamamoto, Y. (1996a). Effect of lecithin on the viscoelastic properties of 6-lactoglobulin-stabilized emulsion gels, Food Hydrocolloids, 10, 301–307.

    CAS  Google Scholar 

  • Dickinson, E. & Yamamoto, Y. (1996b). Viscoelastic properties of heat-set whey protein-stabilized emulsion gels with added lecithin, Journal of Food Science, 61, 811–816.

    CAS  Google Scholar 

  • Dickinson, E., Murray, B.S. & Stainsby, G. (1988a). Coalescence kinetics of protein-stabilized emulsion droplets, in Gums and Stabilizers for the Food Industry (eds. G.O. Phillips et al.), Vol. 4, IRL Press, Oxford, pp. 463–472.

    Google Scholar 

  • Dickinson, E., Rolfe, S.E. & Dalgleish, D.G. (1988b). Competitive adsorption of Ds1-casein and–casein in oil-in-water emulsions, Food Hydrocolloids, 2, 397–405.

    CAS  Google Scholar 

  • Dickinson, E., Mauffret, A., Rolfe, S.E. & Woskett, C.M. (1989a). Adsorption at interfaces in dairy systems, Dairy Technology, 42, 18–22.

    Google Scholar 

  • Dickinson, E., Narhan, S.K & Stainsby, G. (1989b). Stability of cream liqueurs containing low-molecular-weight surfactants, Journal of Food Science, 54, 77–81.

    CAS  Google Scholar 

  • Dickinson, E., Rolfe, S.E. & Dalgleish, D.G. (1989c). Competitive adsorption in oil-in-water emulsions containing i-lactalbumin and–lactoglobulin, Food Hydrocolloids, 3, 193–203.

    CAS  Google Scholar 

  • Dickinson, E., Euston S.R. & Woskett, C.M. (1990a). Competitive adsorption of food macromolecules and surfactants at the oil/water interface, Progress in Colloid and Polymer Science, 82, 65–75.

    CAS  Google Scholar 

  • Dickinson, E., Rolfe, S.E. & Dalgleish, D.G. (1990b). Surface shear viscometry as a probe of protein-protein interactions in mixed protein films adsorbed at the oil/water interface, International Journal of Biological Macromolecules, 12, 189–194.

    CAS  Google Scholar 

  • Dickinson, E., Iveson, G. & Tanai, S. (1993a). Competitive adsorption in protein stabilized emulsions containing oil-soluble and water-soluble surfactants, in Food Colloids and Polymers: Stability and Mechanical Properties (eds. E. Dickinson and P. Walstra), Royal Society of Chemistry, London, pp. 312–322.

    Google Scholar 

  • Dickinson, E., Owusu, R.K. & Williams, A. (1993b). Orthokinetic destabilization of a protein-stabilized emulsion by a water-soluble surfactant, Journal of the Chemical Society, Faraday Transactions, 89, 856–866.

    Google Scholar 

  • Dickinson, E., Hong, S.-T. & Yamamoto, Y. (1996). Rheology of heat-set emulsions gels containing β-lactoglobulin and small-molecule surfactants, Netherlands Milk and Dairy Journal, 50, 199–207.

    CAS  Google Scholar 

  • Doxastakis, G. & Sherman, P. (1984). The interaction of sodium caseinate with monoglyceride and diglyceride at the oil/water interface in corn oil-in-water emulsions and its effect on emulsion stability, Colloid and Polymer Science, 262, 902–905.

    CAS  Google Scholar 

  • Drake, M.A., Boutte, T.T., Luedecke, L.O. & Swanson, B.G. (1994). Milkfat sucrose polyesters as fat substitutes in Cheddar-type cheese, Journal of Food Science, 59, 326–327, 365.

    CAS  Google Scholar 

  • Drake, M.A., Herrett, W., Boylston, T.D. & Swanson, B.G. (1996). Lecithin improves texture of reduced fat cheeses, Journal of Food Science, 61, 639–642.

    CAS  Google Scholar 

  • Drake, M.A., Truong, V.D. Daubert, C.R. (1999). Rheological and sensory properties of reduced-fat processed cheeses containing lecithin. Journal of Food Science, 64, 744–747.

    CAS  Google Scholar 

  • Emmett, P.M. & Rogers, I.S. (1997). Properties of human milk and their relationship with maternal nutrition, Early Human Development, 49, S7–S28.

    CAS  Google Scholar 

  • Euston, S.E. (1989). Competitive Adsorption of Milk Proteins in Oil/Water Emulsions, PhD Thesis, University of Leeds, United Kingdom.

    Google Scholar 

  • Euston S.E., Singh H., Munro P.A. & Dalgleish D.G. (1995a). Competitive adsorption between sodium caseinate and oil-soluble and water-soluble surfactants in oil-in-water emulsions, Journal of Food Science, 60, 1124–1131.

    CAS  Google Scholar 

  • Euston, S.E., Singh H., Munro P.A. & Dalgleish D.G. (1995b). The influence of glycerol monostearate in oil-in-water emulsions stabilized by milk protein, Journal of Food Science, 61, 916–920.

    Google Scholar 

  • Euston, S.R. & Finnigan, S.R. (2001). Aggregation kinetics in heated emulsions stabilized by hydrolysed whey protein, Journal of Agriculture and Food Chemistry, 49(11), 5576–5583.

    CAS  Google Scholar 

  • Euston, S.R., Finnigan, S.R. & Hirst, R.L. (2001). Aggregation kinetics in heated whey protein stabilized emulsions II. Effect of low-molecular weight emulsifiers, Food Hydrocolloids, 15(3), 253–262.

    CAS  Google Scholar 

  • Euston, S.R., Finnigan, S.R. & Hirst, R.L. (2002). Aggregation kinetics in heated whey protein stabilized emulsions III. Effect of polysaccharide stabilizers, Food Hydrocolloids, 16, 499–505.

    CAS  Google Scholar 

  • Farooq, K. & Haque, Z.U. (1992). Effect of sugar esters on the textural properties of non-fat low calorie yoghurt, Journal of Dairy Science, 75, 2676, 2680.

    CAS  Google Scholar 

  • Fontecha, J. & Swaisgood, H.E. (1994). Interaction of sucrose esters with skim milk proteins as characterized by affinity chromatography, Journal of Dairy Science, 77, 3545–3551.

    CAS  Google Scholar 

  • Fox, P.F. & Hearn, C.M. (1978). Heat stability of milk: Influence of denaturable proteins and detergents on pH sensitivity, Journal of Dairy Research, 45, 159–172.

    CAS  Google Scholar 

  • Frøkjaer, S. (1994). Use of hydrolysates for protein supplementation, Food Technology, 48(10), 86–88.

    Google Scholar 

  • Gavrilova, N.B. (1976). Improvement of structural and mechanical properties of sliced process cheese, Zernoperabatyvayuschchaya I Pishchevaya Promyshlennost, 6, 131–136 (In Russian).

    Google Scholar 

  • Goff, H.D. (1988). Emulsifiers in ice cream: How do they work? Modern Dairy, 6, 15–18.

    Google Scholar 

  • Goff, H.D., Verespej, E. & Smith, A.K. (1999). A study of fat and air structures in ice cream, International Dairy Journal, 9, 817–829.

    CAS  Google Scholar 

  • Govin, R. & Leeder, J.G. (1971). Action of emulsifiers in ice cream utilizing the HLB concept, Journal of Food Science, 36, 718–722.

    Google Scholar 

  • Hambling, S.G., McAlpine, A.S. & Sawyer, L. (1992). β-lactoglobulin, in Advanced Dairy Chemistry -1: Proteins (ed. P.F. Fox), Elsevier, London, pp. 141–190).

    Google Scholar 

  • Hanssens, I. & van Cauwelaert, I.H. (1978). Shielding of phospholipid monolayers from phospholipase C hydrolysis by a-lactalbumin adsorption, Biochemical and Biophysical Research Communications, 84, 1088–1096.

    CAS  Google Scholar 

  • Hardy, E.E. Sweetsur, A.W.M., West, I.G. & Muir, D.D. (1985). Heat stability of concentrated milk: Enhancement of initial heat stability by incorporation of food grade lecithin, Journal of Food Technology, 20, 97–105.

    CAS  Google Scholar 

  • Holtorff, A.F. et al. (1951). A study of process cheese emulsifiers, Journal of Dairy Science, 34, 486.

    Google Scholar 

  • Ikeda, S. & Foegeding, E.A. (1999a). Effects of lecithin on thermally induced whey protein isolate gels, Food Hydrocolloids, 13, 239–244.

    CAS  Google Scholar 

  • Ikeda, S. & Foegeding, E.A. (1999b). Dynamic viscoelastic properties of thermally induced whey protein isolate gels with added lecithin, Food Hydrocolloids, 13, 245–254.

    CAS  Google Scholar 

  • Jost, R., Dannenberg, F. & Rosset, J. (1989). Heat-set gels based on oil/water emulsions: An application of whey protein functionality, Food Microstructure, 8, 23–28.

    CAS  Google Scholar 

  • Kabara, J.J. (1983). Medium chain fatty acids and esters, in Antimicrobials in Food (eds. A.L. Branen & P.M. Davidson), Marcel Dekker, New York, pp. 109–140.

    Google Scholar 

  • Kato, N. & Shibasaki, I. (1975). Comparison of antimicrobial activities of fatty acids and their esters, Journal of Fermentation Technology, 53, 793–801.

    CAS  Google Scholar 

  • Keeney, P.G. (1982). Development of frozen emulsions, Food Technology, 36, 65–70.

    Google Scholar 

  • Kieseker, F.G. (1983). Recombined dairy products, CSIRO Food Research Quarterly, 43, 25–37.

    Google Scholar 

  • Knightly, W.H. (1969). The role of ingredients in the formulation of coffee whiteners, Food Technology, 23, 37–48.

    Google Scholar 

  • Knipschildt, M.E. & Andersen, G.G. (1994). Drying of milk and milk products, in Modern Dairy Technology Volume 1. Advances in Milk Processing (ed. R.K. Robinson), Chapman and Hall, London, pp. 159–254.

    Google Scholar 

  • Korver, O. & Meder, H. (1974). The influence of lysolecithin on the complex formation between K-lactoglobulin and–casein, Journal of Dairy Research, 41, 9–17.

    CAS  Google Scholar 

  • Krog, N. (1977). Functions of emulsifiers in food systems, Journal of the American Oil Chemists Society, 54, 124–131.

    CAS  Google Scholar 

  • Krog, N. & Barfod, N.M. (1990). Interfacial properties of emulsifier/protein films related to food emulsions, AIChE Symposium Series, 86, 1–6.

    CAS  Google Scholar 

  • Krog, N. & Sparsø, F.V. (2005). Food emulsifiers: Their chemical and physical properties, in Food Emulsions (eds. S. Friberg, K. Larsson & J. Sjöblom), 4th edition, Marcel Dekker, New York, pp. 45–91.

    Google Scholar 

  • Krog, N., Barfod, N.M. & Bucheim, W. (1986). Protein-fat-surfactant interactions in whippable emulsions, in Food Emulsions and Foams, (ed. E. Dickinson), Royal Society of Chemistry, London, pp. 144–157.

    Google Scholar 

  • Langton, M. & Hermansson, A. M. (1992). Fine-stranded and particulate gels of beta-lactoglobulin and whey-protein at varying pH. Food Hydrocolloids, 5, 523–539.

    CAS  Google Scholar 

  • Larrson, K. & Dejmek, P. (1990). Crystal and liquid crystal structures of lipids, in Food Emulsions (eds. K. Larsson and S. Friberg), Marcel Dekker, New York, pp. 97–125.

    Google Scholar 

  • Lee, S.K., Klostermeyer, H., Schrader, K. & Bucheim, W. (1996). Rheology and microstructure of model processed cheese containing small molecular weight surfactants, Nahrung, 40, 189–194.

    CAS  Google Scholar 

  • Leo, A. & Betscher, J.J. (1971). Use of sodium stearyl-2-lactylate to improve the lipoprotein membrane in non-dairy coffee whiteners, Food Technology, 4, 70–78.

    Google Scholar 

  • Leviton, A. & Pallansch, M.J. (1962). High temperature short-time sterilized evaporated milk. IV. The retardation of gelation with condensed polyphosphates, manganous ions, polyhydric compounds and phosphatides, Journal of Dairy Science, 45, 1045–1056.

    Article  CAS  Google Scholar 

  • Lin, P.M. & Leeder, J.G. (1974). Mechanism of emulsifier action in an ice cream system, Journal of Food Science, 39, 108–111.

    CAS  Google Scholar 

  • Lobato-Calleros, C., Robles-Martinez, J.C., Caballero-Perez, J.F., Aguirre-Mandujano, E. & Vernon-Carter, E.J. (2001). Fat replacers in low-fat Mexican Manchego cheese, Journal of Texture Studies, 32, 1–14.

    Google Scholar 

  • Labato-Calleros, C., Velázquez-Valera, J. Sánchez-Garcia, J. & Vernon-Carter, E.J. (2003). Dynamic rheology of Mexican Manchego cheese-like products containing Canola oil and emulsifier blends. Food Research International, 36, 81–90.

    Google Scholar 

  • Lutton, E.S., Stauffer, C.E., Martin, J.B. & Fehl, A.J. (1969). Solid and liquid monomolecular films at oil/water interfaces, Journal of Colloid and Interface Science, 30, 283–295.

    CAS  Google Scholar 

  • Makino, S. & Moriyama, R. (1991). Interactions of proteins with sucrose esters, in Microemulsions and Emulsions in Foods (eds. M. El-Nokaly & D. Cornell), American Chemical Society Symposium Series, Washington, DC, Vol. 448, p. 182.

    Google Scholar 

  • Mangino M.E. (1992). Gelation of whey protein concentrates, Food Technology, 46, 114–117.

    CAS  Google Scholar 

  • Maxcy, R.B. & Sommer, H.H. (1954). Fat separation in evaporated milk. III. Gravity separation and heat stability, Journal of Dairy Science, 37, 1061–1070.

    Article  CAS  Google Scholar 

  • Mayhill, P.G. & Newstead, D.F. (1992). The effect of milk fat fractions and emulsifier type on creaming in normal-solids UHT recombined milk, Milchwissenschaft, 47, 75–79.

    CAS  Google Scholar 

  • McClements, D.J. (2002a). Colloidal basis of emulsion colour, Current Opinion in Colloid and Interface Science, 7, 451–455.

    CAS  Google Scholar 

  • McClements, D.J. (2002b). Theoretical prediction of emulsion colour, Advances in Colloid and Interface Science, 97, 63–89.

    CAS  Google Scholar 

  • McClements, D.J., Chantrapornchai, W. & Clydesdale, F. (1998). Prediction of food emulsion colour using light scattering theory, Journal of Food Science, 63, 935–939.

    CAS  Google Scholar 

  • McRae, C.H. & Muir, D.D. (1992). Heat stability of recombined milk: Influence of lecithins on the heat coagulation time-pH profile, Journal of Dairy Research, 59, 177–185.

    Google Scholar 

  • McPherson, A.V., Dash, M.C. & Kitchen, B.J. (1984). Isolation and composition of milk fat globule membrane material II. From homogenized and ultra heat treated milk, Journal of Dairy Research, 51, 289–297.

    CAS  Google Scholar 

  • Miller, D.E. & Werstak, C.E. (1983). U.S. Patent 4, 415, 600, July 27th.

    Google Scholar 

  • Morr, C.V. (1992). Improving the texture and functionality of whey protein concentrate, Food Technology, 46, 110–113.

    CAS  Google Scholar 

  • Morr, C.V. & Ha, E.Y. (1993). Whey protein concentrates and isolates: Processing and functional properties, Critical Reviews in Food Science and Nutrition, 33, 431–476.

    CAS  Google Scholar 

  • Newstead, D.F., Sanderson, W.B. & Conaghan, E.F. (1977). Effects of whey protein concentration and heat treatment on the heat stability of concentrated and unconcentrated milk, New Zealand Journal of Dairy Science and Technology, 12, 29–36.

    CAS  Google Scholar 

  • Pearce, K.N. (1978). Study of some factors affecting the heat stability of milk, 20th International Conference Dairy Congress, Paris, E, 250–251.

    Google Scholar 

  • Puyol, P., Perez, M.D., Burgos, J. & Calvo, M. (1998). Effect of the binding of palmitic acid to β-lactoglobulin on its gelation properties, International Dairy Journal, 8, 119–123.

    CAS  Google Scholar 

  • Rivas, H.J. & Sherman, P. (1984). Soy and meat proteins as emulsion stabilizers. 4. The stability and interfacial rheology of o/w emulsions stabilized by soy and meat protein fractions, Colloids and Surfaces, 11, 155–171.

    CAS  Google Scholar 

  • Rosentahl, I. (1991). Milk and Dairy Products. Properties and Processing, VCH Publishers, Weinheim, Germany.

    Google Scholar 

  • Segall, K.I. & Goff, H.D. (1999). Influence of adsorbed milk protein type and surface concentration on the quiescent and shear stability of butteroil emulsions, International Dairy Journal, 9, 683–691.

    CAS  Google Scholar 

  • Segall, K.I. & Goff, H.D. (2002a). Secondary adsorption of milk proteins from the serum to the interface in dairy emulsions: Effect on emulsion properties and possible means of reduction, International Dairy Journal, 12, 889–897.

    CAS  Google Scholar 

  • Segall, K.I. & Goff, H.D. (2002b). A modified ice cream processing routine that promotes fat destabilization in the absence of added emulsifier, International Dairy Journal, 12, 1013–1018.

    CAS  Google Scholar 

  • Shalabi, S.I. & Fox, P.F. (1982). Heat stability of milk: Influence of cationic detergents on pH sensitivity, Journal of Dairy Research, 49, 597–605.

    CAS  Google Scholar 

  • Shibasaki, I. (1979). Antimicrobial activity of fatty acids and their esters. A review, Hakkokogaku, 57, 164–176.

    CAS  Google Scholar 

  • Shimp, L.A. (1982). Process cheese principles, Food Technology, 39, 63–70.

    Google Scholar 

  • Si, J.Q. (1991). The production of dairy analogue products using emulsifiers, stabilizers and flavours, in Milk Fat Production, Technology and Utilization (eds. K.K. Rajah & K.J. Burgess), The Society of Dairy Technology, Huntingdon, pp. 112–121.

    Google Scholar 

  • Sims, R.J. (1989). Spray dried emulsions, in Food Emulsifiers, Chemistry, Technology, Functional Properties and Applications (eds. G. Charalambous & G. Doxastakis), Elsevier, Amsterdam, pp. 495–509.

    Google Scholar 

  • Singh, H. & Creamer, L.K. (1992). Heat stability of milk, in Advanced Dairy Chemistry 1. Proteins (ed. P.F. Fox), Elsevier, London, pp. 621–656.

    Google Scholar 

  • Singh, H. & Tokley, R.P. (1990). Effects of preheat treatments and buttermilk addition on the seasonal variations in the heat stability of recombined evaporated milk and reconstituted concentrated milk, The Australian Journal of Dairy Technology, 45, 10–16.

    Google Scholar 

  • Singh, H., Sharma, R. & Tokley, R.P. (1992). Influence of incorporation of soya lecithin into skim milk powder on the heat stability of recombined evaporated milk, The Australian Journal of Dairy Technology, 47, 33–37.

    CAS  Google Scholar 

  • Sjollema, A. (1987). Recombination of milk and dairy ingredients into milk, cream, condensed milk and evaporated milk, in Milk—The Vital Force, Reidel Publishing, Boston, MA, pp. 251–257.

    Google Scholar 

  • Swaisgood, H.E. (1992). Chemistry of the caseins, in Advanced Dairy Chemistry 1. Proteins (ed. P.F. Fox), Elsevier, London, pp. 63–110.

    Google Scholar 

  • Thomas, M.A., Newell, G., Abad, G.A. & Turner, A.D. (1980). Effect of emulsifying salts on objective and subjective properties of processed cheese, Journal of Food Science, 45, 458–459, 466.

    CAS  Google Scholar 

  • Thomé, K.E. & Eriksson, G. (1973). The foaming properties of cream 2. The effect of surface active agents, especially phospholipids and lipoproteins, on the whippability of cream, Milchwissenschaft, 28, 554–558.

    Google Scholar 

  • Tormo, R., Pota, N., Infante, D., Moran, J., Martin, B. & Bergada, A. (1998). Protein in infant formulas. Future aspects of development, Early Human Development, 53, S165–S172.

    CAS  Google Scholar 

  • Tsuchido, T., Saeki, T. & Shibasaki, I. (1981). Death kinetics of Escherichia coli in a combined treatment with heat and monolaurin, Journal of Food Safety, 3, 57–68.

    CAS  Google Scholar 

  • Tsuchido, T., Takano, M. & Shibasaki, I. (1983). Inhibitory effect of sucrose esters of fatty acids on intact heated bacterial spores, Journal of Antibacterial and Antifungal Agents, 11, 567–573.

    CAS  Google Scholar 

  • Tsuchido, T., Anh, Y.H. & Takano, M. (1987). Lysis of Bacillus subtilis cells by glycerol and sucrose esters of fatty acids, Applied and Environmental Microbiology, 53, 505–508.

    CAS  Google Scholar 

  • Tunick, M.H., Malin, E., Smith, P.W., Shieh, J.J., Sullivan, B.C., Mackey, K.L. & Webb, D. (1999). The smart fat makeover, Prevention, 1, 134–141.

    Google Scholar 

  • Van Boekel, M.A.J.S. (1980). The Influence of Fat Crystals in the Oil Phase on Stability of Oil-in-Water Emulsions, PhD Thesis, Wageningen Agricultural University, The Netherlands.

    Google Scholar 

  • Varnan, A.H. & Sutherland, J.P. (1994). Milk and Milk Products. Technology, Chemistry and Microbiology, Chapman and Hall, London.

    Google Scholar 

  • Vial, Ch, Thakur, R.K., Djelveh, G & Picgirard, L. (2006a). Continuous manufacturing of a light-texture foamed fresh cheese by dispersion of a gas phase. I. Influence of process parameters. Journal of Food Engineering, 77, 1–33.

    Google Scholar 

  • Vial, Ch, Thakur, R.K., A. Pérez Quintάns, Djelveh, G & Picgirard, L. (2006a). Continuous manufacturing of a light-textured foamed fresh cheese by dispersion of a gas phase. II. Influence of formation. Journal of Food Engineering, 77, 14–26.

    Google Scholar 

  • Vodickova, M., & Forman, L. (1984). Use of buttermilk in quality improvement of ice cream, Veda a Vyzkum v Potravinarskem Prumyslu, 30, 213–229.

    Google Scholar 

  • Walstra, P. (1987). Physical principles of emulsion science, in Food Structure and Behaviour (eds. J.M.V. Blanshard & P. Lillford), Academic Press, New York, pp. 87–106.

    Google Scholar 

  • Walstra, P. & Jenness, R. (1984). Dairy Chemistry and Physics, Wiley, New York.

    Google Scholar 

  • Westerbeek, J.M.M. & Prins, A. (1991). Function of W-tending emulsifiers and proteins in whippable emulsions, in Food Polymers, Gels and Colloids (ed. E. Dickinson), Royal Society of Chemistry, London, pp. 147–158.

    Google Scholar 

  • Zakharova, N.P. et al. (1979a). The calcium-phosphorous ratio in processed cheese, Trudy-Vsesoyuznyi-Nauchno-issledovatel’skii-Institu-Maslodel’noi-I-Syrodel’noi-Promyshlennosti-Nauchno-proizvodstvennogo-Ob “edineniya”-‘Uglich’, 27, 105–108, 121 (In Russian).

    Google Scholar 

  • Zakharova, N.P. et al. (1979b). Method for increasing the hydrophilic properties of cheese mass, Trudy-Vsesoyuznyi-Nauchno-issledovatel’skii-Institu-Maslodel’noi-I-Syrodel’noi-Promyshlennosti-Nauchno-proizvodstvennogo-Ob “edineniya”-‘Uglich’, 27, 108–111 (In Russian).

    Google Scholar 

  • Zadow, J.G. (1982). Recombined milks and creams, International Dairy Federation Bulletin, 142, 33–46.

    Google Scholar 

  • Zhang, Z. & Goff, H.D. (2005). On fat destabilization and composition of the air interface in ice cream containing saturated and unsaturated monoglyceride, International Dairy Journal, 15, 495–500.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Euston, S.R. (2008). Emulsifiers in Dairy Products and Dairy Substitutes. In: Hasenhuettl, G.L., Hartel, R.W. (eds) Food Emulsifiers and Their Applications. Springer, New York, NY. https://doi.org/10.1007/978-0-387-75284-6_7

Download citation

Publish with us

Policies and ethics