Advertisement

Physicochemical Aspects of an Emulsifier Functionality

  • Björn Bergenståhl

The characteristic property of all emulsifiers is their surface activity. Surface activity is the ability to form a surface excess at interfaces. The formation of adsorbed layers at interfaces are displayed in a change of a range of easily observable and technically important properties.

  1. 1.

    The surface tension is reduced.

     
  2. 2.

    The lifetimes of bubbles are increased. (Only very pure water displays a very short lifetime, a few seconds, of bubbles created by shaking. Normal standard “pure water,” double distilled, usually displays a bubble lifetime of about 20–30 s.)

     
  3. 3.

    The emulsifiability of oils in water is enhanced. Smaller drops with a longer lifetime are formed with less stirring.

     
  4. 4.

    The aggregation rate of dispersed particles is changed. Surface-active additives may induce or prevent flocculation of disperions.

     
  5. 5.

    The sediment volume of settling particles is influenced. Surface additives inducing adhesive may create a loose or compact sediment.

     
  6. 6.

    Crystallization properties are changed. This may include crystallization rate and crystal shape.

     

This chapter aims to discuss the principal physical origin of the various functionalities of typical lipid food emulsifiers. Aspects on the functionality under very different conditions in various foods will be discussed. I will try to show how we may select emulsifiers on the basis of their fundamental properties.

Keywords

Interfacial Tension Emulsion Droplet Lamellar Phase Soybean Lecithin Food Emulsifier 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arvidsson, G. et al. (1985). Eur. J. Biochem, 152, 753–9.CrossRefGoogle Scholar
  2. Bancroft, W.D. (1913). J. Phys. Chem., 17, 501.CrossRefGoogle Scholar
  3. Bergenståhl, B. (1991). In Food Polymers, Gels, and Colloids (ed. E. Dickinson), Royal Society of Chemistry, London, pp. 123–131.Google Scholar
  4. Bergenståhl, B., Claesson, P. M. (1990). In Food Emulsions (eds. K. Larsson, S. Friberg), Marcel Dekker, New York.Google Scholar
  5. Bergenståhl, B., Fontell K. (1983). Prog. Coll. Pol. Sci., 68, 48–52.CrossRefGoogle Scholar
  6. Bergenståhl, B., Stenius P.J. (1987). Phys. Chem., 91, 5944–48.CrossRefGoogle Scholar
  7. Boyd, J. V. et al. (1976). In Theory and Practice of Emulsion Technology (ed. A. L. Smith), Academic, London.Google Scholar
  8. Caffrey, M. (1985). Biochemistry, 24, 4826–44.CrossRefGoogle Scholar
  9. Courthaudon, J. L. et al. (1991a). J. Agr. Food Chem., 39, 1365.CrossRefGoogle Scholar
  10. Courthaudon, J. L. et al. (1991b). J. Colloid Interface Sci., 145, 390.CrossRefGoogle Scholar
  11. Darling, D., Birkett, R. J. (1987). In Food Emulsions and Foams (ed. E. Dickinson). Royal Society of Chemistry, London.Google Scholar
  12. Davies, J. T. (1957). Proc. Intern. Congr. Surf. Activity, 2d, London, 1, 426.Google Scholar
  13. Dickinson, E. (1986). Food Hydrocolloids, 1, 3.CrossRefGoogle Scholar
  14. Dickinson, E., Tanai S. (1992). Food Hydrocolloids, 6, 163–71.CrossRefGoogle Scholar
  15. Dickinson, E. et al. (1991). Food Hydrocolloids, 4, 403–14.CrossRefGoogle Scholar
  16. Eriksson, P. O. et al. (1987). Phys. Chem., 91, 846–63.CrossRefGoogle Scholar
  17. Eriksson, P. O. et al. (1985). Chem. Phys. Lipids, 37, 357–71.CrossRefGoogle Scholar
  18. Fontell, K. (1978). Progr. Chem. Fats Other Lipids, 16, 145–62.CrossRefGoogle Scholar
  19. Fontell, K. et al. (1968). Acta Polytechnica Scandinavica, Chapter 2, Chemistry Series III, 74, 2.Google Scholar
  20. Friberg, S. (1990). In Food Emulsions (eds. K. Larsson, S. Friberg), Marcel Dekker, New York.Google Scholar
  21. Friberg, S. (1971). J. Colloid Interface Sci., 37, 291.CrossRefGoogle Scholar
  22. Friberg, S., Mandell, L. (1970a). J. Assoc. Off. Chem. Soc., 47, 149.CrossRefGoogle Scholar
  23. Friberg, S. (1970b). J. Pharm. Sci., 59, 1001–4.CrossRefGoogle Scholar
  24. Friberg, S. Rydhag, L. (1971). Kolloid Z. u. Polymere, 244, 233–9.CrossRefGoogle Scholar
  25. Friberg, S. Wilton, I. (1970). Liquid crystals—the formula for emulsions, Am. Parf. and Cosm., 85, 27–30.Google Scholar
  26. Friberg, S. et al. (1969). J. Colloid Interface Sci., 29, 155–6.CrossRefGoogle Scholar
  27. Gawrish, K. et al. (1992). Biochemistry, 31, 2856–64.CrossRefGoogle Scholar
  28. Griffin, W. C. (1979). In Kirk-Othmer Encyclopedia of Chemical Technology, Vol. 8 Wiley, New York.Google Scholar
  29. Griffin, W. C. (1949). J. Soc. Cosmetic Chemists, 311–26.Google Scholar
  30. Hall, D.G., Pethica, D.A. (1967). In Nonionic Surfactants (ed. M.J. Schick), Marcel Dekker, New York, p. 516.Google Scholar
  31. Inoko, Y., Mitsui, T.J. (1978). Phys Soc. Jap., 44, 1918.CrossRefGoogle Scholar
  32. Israelachvili, J. (1992). Intermolecular and Surface Forces, Academic, London.Google Scholar
  33. Israelachvili, J. et al. (1977). Biochim. Biophys. Acta, 470, 185–201.CrossRefGoogle Scholar
  34. Israelachvili, J. et al. (1976). J. Chem. Soc. Faraday Transactions 11, 72, 1525.CrossRefGoogle Scholar
  35. Janiak, M.J. et al. (1979). J. Biol. Chem., 254, 6068–78.Google Scholar
  36. Krog, N. (1990). In Food Emulsion (eds. K. Larsson, S. Friberg), Marcel Dekker. New York, p. 127.Google Scholar
  37. Kronberg, B. (1983). J. Colloid Interface Sci., 96, 55–68.CrossRefGoogle Scholar
  38. Kunieda, H., Ishikawa, N. (1985). J. Colloid Interface Sci., 107, 122–28.CrossRefGoogle Scholar
  39. Kunieda, H. Shinoda, K. (1985). J. Colloid Interface Sci., 107, 107–21.CrossRefGoogle Scholar
  40. Larsson, K., Krog, N. (1973). Chem. Phys. Lipids, 10, 177.CrossRefGoogle Scholar
  41. Lindblom, G. et al. (1991). Biochemistry, 30, 10938–48.CrossRefGoogle Scholar
  42. Malmsten, M. (1995). J. Colloid Interface Sci., 172, 106–15.CrossRefGoogle Scholar
  43. Östberg, G. et al. (1995). Colloid Surfaces A. Physichemical Engineering Asp., 94, 161–71.CrossRefGoogle Scholar
  44. Pezron, I., et al. (1991). J. Colloid Interface Sci., 144, 449–57.CrossRefGoogle Scholar
  45. Rydhag, L. (1979). Fette Seifen Anstrichm., 81, 168–73.CrossRefGoogle Scholar
  46. Rydhag, L. Wilton, I. (1981). J. Assoc. Off. Chem. Soc., 58, 830–7.CrossRefGoogle Scholar
  47. Shinoda, K., Friberg, S. (1986). Emulsions and Solubilization, Wiley, New York.Google Scholar
  48. Shinoda, K., Kunieda H. (1983). In Encyclopedia of Emulsion Technology, Vol. 1 (ed. P Becher), Marcel Dekker, New York.Google Scholar
  49. Shinoda, K., Saito, H. (1968). J. Colloid Interface Sci., 30, 258–63.CrossRefGoogle Scholar
  50. Small, D. M. (1986). Handbook of Lipid Research: Physical Chemistry of Lipids, Plenum, New York.Google Scholar
  51. Söderberg, I. (1990). Structural Properties of Monoglycerides. Phospholipids and Fats in Aqueous Systems, PhD Thesis, University of Lund, Sweden.Google Scholar
  52. Tanford, C. (1973). In The Hydrophobic Effect, Wiley, New York.Google Scholar
  53. Walstra, P. (1983). In Encyclopedia of Emulsion Technology, Vol. 1 (ed. P. Becher), Marcel Dekker, New York, p. 57.Google Scholar
  54. Walstra, P. (1988). In Gums and Stabilizers for the Food Industry, Vol. 4 (eds. G.O. Phillips et al.). IRL Press, Oxford, pp. 233–336.Google Scholar
  55. Westesen, K., Wehler, T. (1992). J. Pharm. Sci., 81, 777.CrossRefGoogle Scholar
  56. Wilton, I., Friberg, S. (1971). Influence of temperature-induced phase transition in fat emulsions. J. Assoc. Off. Chem. Soc., 48, 771–4.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Björn Bergenståhl
    • 1
  1. 1.Food Technology Center for Chemistry and Chemical EngineeringLund UniversitySweden

Personalised recommendations