Advertisement

Protein/Emulsifier Interactions

  • Tommy Nylander
  • Thomas Arnebrant
  • Martin Bos
  • Peter Wilde

Many food emulsions are more complex than a simple colloidal dispersion of liquid droplets in another liquid phase. This is mainly because the dispersed phase is partially solidified or the continuous phase may contain crystalline material, as in ice cream. However, one characteristic that all emulsions have in common is that they are (thermodynamically) unstable. The four main mechanisms that can be identified in the process of breaking down an emulsion are creaming, flocculation, coalescence, and Ostwald ripening. There are two ways in which the process of breakdown of an emulsion can be influenced. First, use of mechanical devices to control the size of the dispersion droplets and second, the addition of stabilizing chemical additives like low molecular weight emulsifiers or polymers to keep it dispersed. The main purpose of the latter is to prevent the emulsion droplets flocculating and from fusing together (coalescence), often achieved by repulsive droplet/droplet interactions. These interparticle interactions are determined mainly by the droplet surface, which is coated with emulsifiers, often surface-active components of biological origin like proteins, mono- and diglycerides, fatty acids, or phospholipids. The forces most commonly observed are electrostatic double layer, van der Waals, hydration, hydrophobic, and steric forces. They are responsible for many emulsion properties including their stability.

The complex mechanisms involved in formation, stabilization, and destabilization of emulsions make fundamental studies on applied systems difficult. One approach has therefore been to clarify the basic physical and chemical properties of emulsions by the study of simpler model systems. The adsorption behavior of single-emulsion components like proteins, fatty acids, surfactants, or phospholipids at liquid/air or liquid/liquid interfaces have given information about surface activity, adsorbed amounts, kinetics, conformation, and surface rheology. The development of experimental techniques has made it possible to extend these studies to multicomponent systems. This has provided further information concerning competitive adsorption, displacement, and complex formation, which can be related to emulsion and foam stability.

Keywords

Sodium Dodecyl Sulphate Polar Lipid Surfactant Concentration Nonionic Surfactant Colloid Interface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahlers, M., W. Müller, et al. (1990). Specific interactions of proteins with functional lipid monolayers—ways of simulating biomembrane process. Angew. Chem. Int. Ed. Engl., 29, 1269–1285.CrossRefGoogle Scholar
  2. Almgren, M. and S. Rangelov (2006). Polymorph dispersed particles from the bicontinuous cubic phase of glycerol monooleate stabilized by PEG-copolymers with lipid-mimetic hydrophobic anchors. J. Dispersion Sci. Technol., 27, 599–609.CrossRefGoogle Scholar
  3. Ananthapadmanabhan, K. P. (1993). Protein-Surfactant Interactions. Interactions of Surfactants with Polymers and Proteins. K. P. Ananthapadmanabhan and E. D. Goddard (Eds.) Boca Raton; Florida, CRC Press, pp. 319–366.Google Scholar
  4. Andersson, S., S. T. Hyde, et al. (1988). Minimal surfaces and structures: From inorganic and metal crystals to cell membranes and biopolymers. Chem. Rev., 88, 221–242.CrossRefGoogle Scholar
  5. Angelov, B., A. Angelova, et al. (2006). Detailed structure of diamond-type lipid cubic nanoparticles. J. Am. Chem. Soc., 128, 5813–5817.CrossRefGoogle Scholar
  6. Angelova, A., B. Angelov, et al. (2005). Proteocubosomes: Nanoporous vehicles with tertiary organized fluid interfaces. Langmuir, 21, 4138–4143.CrossRefGoogle Scholar
  7. Aynié, S., M. Le Meste, et al. (1992). Interactions between lipids and milk proteins in emulsion. J. Food Sci., 57, 883–887.CrossRefGoogle Scholar
  8. Backstrom, K., B. Lindman, et al. (1988). Removal of triglycerides from polymer surface in relation to surfactant packing—ellipsometer studies. Langmuir, 4, 872–878.CrossRefGoogle Scholar
  9. Barauskas, J., M. Johnsson, et al. (2005a). Cubic phase nanoparticles (cubosome): Principles for controlling size, structure, and stability. Langmuir, 21, 2569–2577.CrossRefGoogle Scholar
  10. Barauskas, J., M. Johnsson, et al. (2005b). Self-assembled lipid superstructures: Beyond vesicles and liposomes. Nano Lett., 5, 1615–1619.CrossRefGoogle Scholar
  11. Barauskas, J., M. Johnsson, et al. (2006a). Hexagonal liquid-crystalline nanoparticles in aqueous mixtures of glyceryl monooleyl ether and pluronic F127. Chem. Lett., 35, 830–831.CrossRefGoogle Scholar
  12. Barauskas, J., A. Misiunas, et al. (2006b). “Sponge” nanoparticle dispersions in aqueous mixtures of diglycerol monooleate, glycerol dioleate, and polysorbate 80. Langmuir, 22, 6328–6334.CrossRefGoogle Scholar
  13. Baruskas, J., V. Razumas, et al. (1999). Solubilization of ubiqinone-10 in the lamellar and bicontinous cubic phases of aqueous monoolein. Chem. Phys. Lipids, 97, 167–179.CrossRefGoogle Scholar
  14. Barauskas, J., V. Razumas, et al. (2000). Entrapment of glucose oxidase into the cubic Q230 and Q224 phases of aqueous monoolein. Prog. Colloid Polym. Sci., 116, 16–20.CrossRefGoogle Scholar
  15. Benichou, A., A. Aserin, et al. (2002). Protein-polysaccharide interactions for stabilization of food emulsions. J. Dispersion Sci. Technol., 23, 93–123.Google Scholar
  16. Biswas, S. C. and D. Marion (2006). Interaction between puroindolines and the major polar lipids of wheat seed endosperm at the air-water interface. Colloids Surf. B Biointerfaces, 53, 167–174.CrossRefGoogle Scholar
  17. Blomqvist, B. R., M. J. Ridout, et al. (2004). Disruption of viscoelastic beta-lactoglobulin surface layers at the air-water interface by nonionic polymeric surfactants. Langmuir, 20, 10150–10158.CrossRefGoogle Scholar
  18. Blomqvist, B. R., P. Wilde, et al. (2006). Competitive destabilization/stabilization of beta-lactoglobulin foam by PEO-PPO-PEO polymeric surfactants. J. Dispersion Sci. Technol., 27, 527–536.CrossRefGoogle Scholar
  19. Bohnert, J. L. and T. A. Horbett (1986). Changer in adsorbed fibrinogen and albumin interactions with polyers indicated by decrease in detergent elutability. J. Colloid Interface Sci., 111, 363–378.CrossRefGoogle Scholar
  20. Borné, J., T. Nylander, et al. (2001). Phase behavior and aggregate formation for the aqueous monoolein system mixed with sodium oeate and oleic acid. Langmuir, 17, 7742–7751.CrossRefGoogle Scholar
  21. Borné, J., T. Nylander, et al. (2002a). Effect of lipase on different lipid liquid crystalline phases formed by oleic acid based acyl glycerols in aqueous systems. Langmuir, 18, 8972–8981.CrossRefGoogle Scholar
  22. Borné, J., T. Nylander, et al. (2002b). Effect of lipase on monoolein-based cubic phase dispersion (cubosomes) and vesicles. J. Phys. Chem. B, 106, 10492–10500.CrossRefGoogle Scholar
  23. Bos, M. and T. Nylander (1996). The interaction between b-lactoglobulin and phospholipids at the air/water interface. Langmuir, 12, 2791–2797.CrossRefGoogle Scholar
  24. Bos, M., T. Nylander, et al. (1997). Protein/emulsifier interactions. Food emulsifiers and their applications. G. L. Hasenhuettl and R. W. Hartel. New York, Chapman and Hall, pp. 95–146.Google Scholar
  25. Bos, M. A. and T. van Vliet (2001a). Interfacial rheological properties of adsorbed protein layers and surfactants: a review. Adv. Colloid Interface Sci., 91, 437–471.CrossRefGoogle Scholar
  26. Bos, M. A. and T. van Vliet (2001b). Interfacial rheological properties of adsorbed protein layers and surfactants: a review. Adv. Colloid Interface Sci., 91, 437–471.CrossRefGoogle Scholar
  27. Boström, M., D. R. M. Williams, et al. (2002). Influence of Hofmeister effects on surface pH and binding of peptides to membranes. Langmuir, 18, 8609–8615.CrossRefGoogle Scholar
  28. Boström, M., D. R. M. Williams, et al. (2001). Specific ion effects: Why DLVO theory fails for biology and colloid systems. Phys. Rev. Lett., 87, 168103.CrossRefGoogle Scholar
  29. Boyd, B. J., D. V. Whittaker, et al. (2006). Hexosomes formed from glycerate surfactants—Formulation as a colloidal carrier for irinotecan. Int. J. Pharm., 318, 154–162.CrossRefGoogle Scholar
  30. Brash, J. L. and P. Hove (1984). Effect of plasma dilution on adsorption of fibrinogen to solid surfaces. Thromb. Haemost., 51, 326–330.Google Scholar
  31. Briggs, J., H. Chung, et al. (1996). The temperature-composition phase diagram and mesophase structure characterization of the monoolein/water system. J. Phys. II France, 6, 723–751.CrossRefGoogle Scholar
  32. Brooksbank, D. V., J. Leaver, et al. (1993). Adsorption of milk proteins to phosphatidylglycerol and phosphatidylcholine liposomes. J. Colloid Interface Sci., 161, 38–42.CrossRefGoogle Scholar
  33. Brown, E. M. (1984). Interactions of b-lactoglobulin with lipids: A review. J. Dairy Sci., 67, 713–722.CrossRefGoogle Scholar
  34. Brown, E. M., R. J. Caroll, et al. (1983). Complex formation in sonicated mixtures of b-lactoglobulin and phosphatidylcholine. Lipids, 18, 111–118.CrossRefGoogle Scholar
  35. Buckingham, J. H., J. Lucassen, et al. (1978). Surface properties of mixed solutions of poly-L-lysine and sodium dodecyl sulfate. J. Colloid Interface Sci., 67, 423–431.CrossRefGoogle Scholar
  36. Bychokova, V. E., R. H. Pain, et al. (1988). The ‘molten globule’ state is involved in the translocation across membranes? FEBS Lett., 238, 231–234.CrossRefGoogle Scholar
  37. Bylaite, E., T. Nylander, et al. (2001). Emulsification of caraway essential oil in water by lecithin and b-lactoglobulin—emulsion stability and properties of the formed oil-aqueous interface. Collloids Surf. B Biointerfaces, 20, 327–340.CrossRefGoogle Scholar
  38. Caboi, F., G. S. Amico, et al. (2001). Addition of hydrophilic and lipophilic compounds of biological relevance to the monoolein: Water system. I. Phase behavior. Chem. Phys. Lipids, 109, 47–62.CrossRefGoogle Scholar
  39. Caboi, F., J. Borné, et al. (2002). Lipase action on a monoolein/sodium oleate aqueous cubic liquid crystalline phase - a NMR and X-ray diffraction study. Collloids Surf. B Biointerfaces, 26, 159–171.CrossRefGoogle Scholar
  40. Caboi, F., T. Nylander, et al. (1997). Structural effects, mobility and redox behavior of Vitamin K1 hosted in the monoolein-water liquid crystalline phases. Langmuir, 13, 5476–5483.CrossRefGoogle Scholar
  41. Carlsson, A., M. Bergqvist, et al. (1995). Digalactosyldiacylglycerol—a new excipient in drug formulation. Progress in Drug Delivery System IV, Biomedical Research Foundation, Tokyo 105–115.Google Scholar
  42. Castle, J., E. Dickinson, et al. (1987). Mixed-protein films adsorbed at the oil-water interface. ACS Symp. Ser., 343, 118–134.CrossRefGoogle Scholar
  43. Chen, J. and E. Dickinson (1993). Time-dependent competetive adsorption of milk proteins and surfactants in oil-in-water emulsions. J. Sci. Food Agric., 62, 283–289.CrossRefGoogle Scholar
  44. Chen, J. and E. Dickinson (1995a). Protein/surfactant interactions Part 1. Flocculation of emulsions containing mixed protein + surfactant. Colloids Surfaces A: Physicochem. Eng. Aspects, 100, 255–265.CrossRefGoogle Scholar
  45. Chen, J. and E. Dickinson (1995b). Protein/surfactant interactions Part 2. Electrophoretic mobility of mixed protein + surfactant systems. Colloids Surfaces A: Physicochem. Eng. Aspects, 100, 267–277.CrossRefGoogle Scholar
  46. Chen, J. and E. Dickinson (1995c). Protein/surfactant interfacial interactions. Part 3. Competitive adsorption of protein + surfactant in emulsions. Colloids Surfaces A: Physicochem. Eng. Aspects, 101, 77–85.CrossRefGoogle Scholar
  47. Chen, J., E. Dickinson, et al. (1993). Interfacial interactions, competitive adsorption and emulsion stability. Food Struct., 12, 135–146.Google Scholar
  48. Chupin, V., J. A. Killian, et al. (1987). 2H-Nuclear magnetic resononance investigations on phospholipid acyl chain order and dynamics in the gramicidin-induced hexagonal HII phase. Biophys. J., 51, 395–405.CrossRefGoogle Scholar
  49. Clark, D. C. (1995). Application of state-of-the-art fluorescence and interferometric technique to study coalescence in food dispersions. Characterisation of Food: Emerging Methods. A. Goankar. Amsterdam, Elsevier, pp. 23–57.CrossRefGoogle Scholar
  50. Clark, D. C., M. Coke, et al. (1990a). Molecular-diffusion and thickness measurements of protein-stabilized thin liquid-films. J. Colloid Interface Sci., 138, 207–219.CrossRefGoogle Scholar
  51. Clark, D. C., M. Coke, et al. (1991a). Molecular diffusion at interfaces and its relation to dispersed phase stability. Food, Polymers, Gels and Colloids. E. Dickinson. London, Royal Society of Chemistry, pp. 272–278.Google Scholar
  52. Clark, D. C., R. Dann, et al. (1990b). Surface-diffusion in sodium dodecyl sulfate-stabilized thin liquid-films. J. Colloid Interface Sci., 138, 195–206.CrossRefGoogle Scholar
  53. Clark, D. C., F. Husband, et al. (1995). Evidence of extraneous surfactant adsorption altering adsorbed layer properties of b-lactoglobulin. J. Chem. Soc. Faraday Trans., 91, 1991–1996.CrossRefGoogle Scholar
  54. Clark, D. C., A. R. Mackie, et al. (1994a). Differences in the structure and dynamics of the adsorbed layers in protein stabilized model foams and emulsions. Faraday Discuss., 98, 253–262.CrossRefGoogle Scholar
  55. Clark, D. C., P. J. Wilde, et al. (1991b). Destabilization of i-lactalbumin foams by competitive adsorption of the surfactant Tween 20. Colloids Surf., 59, 209–223.CrossRefGoogle Scholar
  56. Clark, D. C., P. J. Wilde, et al. (1992). The interaction of sucrose esters with b-lactoglobulin and b-casein from bovine milk. Food Hydrocolloids, 6, 173–186.CrossRefGoogle Scholar
  57. Clark, D. C., P. J. Wilde, et al. (1993). Differences in the structure and dynamics of the adsorbed layers in protein stabilised model foams and emulsions. Food Colloids and Polymers: Structure and Dynamics. E. Dickinson and P. Walstra. Cambridge, Royal Society of Chemistry Special Publication No. 113, pp. 354–364.Google Scholar
  58. Clark, D. C., P. J. Wilde, et al. (1994b). The protection of beer foam against lipid-induced destabilization. J. Inst. Brew., 100, 23–25.Google Scholar
  59. Coke, M., P. J. Wilde, et al. (1990). The influence of surface composition and molecular diffusion on the stability of foams formed from protein/surfactant mixtures. J. Colloid Interface Sci., 138, 489–504.CrossRefGoogle Scholar
  60. Cordoba, J., M. D. Reboiras, et al. (1988). Interaction of n-octyl-b-D-glucopyranoside with globular proteins in aqueous solution. Int. J. Biol. Macromol., 10, 270–276.CrossRefGoogle Scholar
  61. Corkery, R. W. (2002). The anti-parallel, extended or splayed-chain conformation of amphiphilic lipids. Collloids Surf. B Biointerfaces, 26, 3–20.CrossRefGoogle Scholar
  62. Cornell, D. G. (1982). Lipid-protein interactions in monolayers: Egg yolk phosphatidic acid and b-lactoglobulin. J. Colloid Interface Sci., 88, 536–545.CrossRefGoogle Scholar
  63. Cornell, D. G. and R. J. Caroll (1985). Miscibility in lipid-protein monolayers. J. Colloid Interface Sci., 108, 226–233.CrossRefGoogle Scholar
  64. Cornell, D. G. and D. L. Patterson (1989). Interaction of phospholipids in monolayers with b-lactoglobulin adsorbed from solution. J. Agric. Food Chem., 37, 1455–1459.CrossRefGoogle Scholar
  65. Cornell, D. G., D. L. Patterson, et al. (1990). The interaction of phospholipids in monolayers with bovine serum albumin and a-lactalbumin adsorbed from solution. J. Colloid Interface Sci., 140, 428–435.CrossRefGoogle Scholar
  66. Courthaudon, J. L., E. Dickinson, et al. (1991). Competitive adsorption of lecithin and b-casein in oil-in-water emulsions. J. Agric. Food Chem., 39, 1365–1368.CrossRefGoogle Scholar
  67. Cowley, A. C., N. L. Fuller, et al. (1978). Measurements of repulsive forces between charged phospholipid bilayers. Biochemistry, 17, 3163–3168.CrossRefGoogle Scholar
  68. Creighton, T. E. (1990). Protein folding. Biochem. J., 270, 1–16.Google Scholar
  69. Creighton, T. E. (1993). Proteins — Structure and Molecular Properties. New York, W. H. Freeman.Google Scholar
  70. Danthine, S., C. Blecker, et al. (2000). Progress in milk fat globule membrane research: a review. Lait, 80, 209–222.CrossRefGoogle Scholar
  71. De Kruijff, B. (1997). Lipid polymorphism and biomembrane function. Curr. Opin. Colloid Interface Sci., 1, 564–569.Google Scholar
  72. De Kruijff, B. and P. R. Cullis (1980). Cytochrome s specifically induces non-bilayer structures in cardiolipin containing model membranes. Biochim. Biophys. Acta, 602, 477–490.CrossRefGoogle Scholar
  73. de Wit, J. N. (1989). Functional properties of whey proteins. Developments in Dairy Chemistry - 4. P. F. Fox. London, Elsevier Applied Science, pp. 285–322.Google Scholar
  74. Dickinson, E. (1993). Proteins in solution and at interfaces. Interactions of Surfactants with Polymers and Proteins. K. P. Ananthapadmanabhan and E. D. Goddard (Eds.) Boca Raton; Florida, CRC Press, pp. 295–317.Google Scholar
  75. Dickinson, E. (1996). Biopolymer interactions in emulsion systems: Influences on creaming, flocculation, and rheology. Macromolecular Interactions in Food Technology. Washington DC, American Chemical Society. 650, pp. 197–207.CrossRefGoogle Scholar
  76. Dickinson, E. (1999). Adsorbed protein layers at fluid interfaces: Interactions, structure and surface rheology. Collloids Surf. B Biointerfaces, 15, 161–176.CrossRefGoogle Scholar
  77. Dickinson, E. (2003). Hydrocolloids at interfaces and the influence on the properties of dispersed systems. Food Hydrocolloids, 17, 25–39.CrossRefGoogle Scholar
  78. Dickinson, E. and G. Iveson (1993). Adsorbed films of b-lactoglobulin + lecithin at the hydrocarbon-water and triglyceride–water interfaces. Food Hydrocoll., 6, 533–541.CrossRefGoogle Scholar
  79. Dickinson, E. and Y. Matsumura (1991). Time-dependent polymerization of b-lactoglobulin through disulphide bonds at the oil-water interface in emulsions. Int. J. Biol. Macromol., 13, 26–30.CrossRefGoogle Scholar
  80. Dickinson, E. and Y. Matsumura (1994). Proteins at liquid interfaces: role of the molten globule state. Colloids Surf. B Biointerfaces, 3, 1–17.CrossRefGoogle Scholar
  81. Dickinson, E. and G. Stainsby (1982). Colloids in Food. London, Applied Science Publishers.Google Scholar
  82. Dickinsson, E. D. and C. M. Woskett (1989). Competitive adsorption between proteins and small molecular surfactants in food emulsions. Food and Colloids. R. D. Bee, P. Richmond and J. Mingins (Eds.) London, Royal Society of Chemistry, pp. 74–96.Google Scholar
  83. Diederich, A., C. Sponer, et al. (1996). Reciprocal influence between the protein and lipid components of a lipid-protein membrane model. Colloids Surf. B Biointerfaces, 6, 335–346.CrossRefGoogle Scholar
  84. Dill, K. A. (1990). Dominant forces in protein folding. Biochemistry, 29, 7133–7155.CrossRefGoogle Scholar
  85. Dolgikh, D. A., L. V. Abaturov, et al. (1985). Compact state of a protein molecule with pronounced small-scale mobility: bovine a-lactalbumin. Eur. Biophys. J., 13, 109–121.CrossRefGoogle Scholar
  86. Dolgikh, D. A., R. I. Gilmanshin, et al. (1981). a-Lactalbumin: Compact state with fluctuating tertiary structure? FEBS Lett., 136, 311–315.CrossRefGoogle Scholar
  87. Du, Y.-K., J.-Y. An, et al. (1996). A study of the interaction between glucolipids of different hydrophobicities and glucos oxidase by a monolayer technique. Colloid Surf. B Biointerfaces, 7, 129–133.CrossRefGoogle Scholar
  88. Dubreil, L., J. P. Compoint, et al. (1997). Interaction of puroindolines with wheat flour polar lipids determines their foaming properties. J. Agric. Food Chem., 45, 108–116.CrossRefGoogle Scholar
  89. Elwing, H., A. Askendal, et al. (1989). Desorption of fibrinogen and E-globulin from solid surface induced by a nonionic detergent. J. Colloid Interface Sci., 128, 296–300.CrossRefGoogle Scholar
  90. Elwing, H. and C. G. Golander (1990). Protein and detergent interaction phenomena on solid surface with gradients in chemical composition. Adv. Colloid Interface Sci., 32, 317–339.CrossRefGoogle Scholar
  91. Engblom, J., Y. Miezis, et al. (2000). On the swelling of monoolein liquid-crystalline aqueous phases in the presence of distearoylphosphatidylglycerol. Prog. Colloid Polym. Sci., 116, 9–15.CrossRefGoogle Scholar
  92. Engel, M. F. M., C. P. M. van Mierlo, et al. (2002). Kinetic and Structural Characterization of Adsorption-induced Unfolding of Bovine alpha-Lactalbumin. J. Biol. Chem., 277, 10922–10930.CrossRefGoogle Scholar
  93. Ericsson, B. (1986). Interactions between globular proteins and lipids. Food Technology. Lund, Sweden, University of Lund: 65.Google Scholar
  94. Ericsson, B. and P.-O. Hegg (1985). Surface behaviour of adsorbed films from protein-amphiphile mixtures. Prog. Colloid Polym. Sci., 70, 92–95.CrossRefGoogle Scholar
  95. Ericsson, B., P.-O. Hegg, et al. (1983a). Protection of ovalbumin against irreversible heat denaturation by cationic amphiphile at high concentration. J. Food Technol., 18, 11–19.CrossRefGoogle Scholar
  96. Ericsson, B., P.-O. Hegg, et al. (1987a). Effect on cationic amphiphiles and temperature on lysozyme conformation. J. Dispersion Sci. Technol., 8, 271–287.CrossRefGoogle Scholar
  97. Ericsson, B., P.-O. Hegg, et al. (1987b). Effects of amphiphiles on trypsin activity and conformation. J. Dispersion Sci. Technol., 8, 289–301.CrossRefGoogle Scholar
  98. Ericsson, B., K. Larsson, et al. (1983b). A cubic protein-monoolein-water phase. Biochim. Biophys. Acta, 729, 23–27.CrossRefGoogle Scholar
  99. Esposito, E., R. Cortesi, et al. (2005). Cubosome dispersions as delivery systems for percutaneous administration of indomethacin. Pharm. Res., 22, 2163–2173.CrossRefGoogle Scholar
  100. Evans, D. F., M. Allen, et al. (1984a). Critical micelle concentrations for alkyltrimethylammonium bromides in water from 25 to 160 °C. J. Sol. Chem., 13, 87–101.CrossRefGoogle Scholar
  101. Evans, D. F., D. J. Mitchell, et al. (1984b). Ion binding and dressed micelles. J. Phys. Chem., 88, 6344–6348.CrossRefGoogle Scholar
  102. Ewers, W. E. and K. L. Sutherland (1952). The role of surface transport in the stability and breakdown of foams. Aust. J. Sci. Res. Ser., A5, 697–710.Google Scholar
  103. Fainerman, V. B., E. H. Lucassen-Reynders, et al. (1998). Adsorption of surfactants and proteins at fluid interfaces. Colloids Surfaces A: Physicochem. Eng. Aspects, 143, 141–165.CrossRefGoogle Scholar
  104. Fang, Y. and D. G. Dalgleish, 73, 437–442 (1996). Comparison of the effects of three different phosphatidylcholines on casein-stabilized oil-in-water emulsions. J. Am. Oil Chem. Soc., 73, 437–442.CrossRefGoogle Scholar
  105. Flockhart, B. D. (1961). The effect of temperature on the critical micelle concentration of some paraffin-chain salts. J. Colloid Interface Sci., 16, 484–492.Google Scholar
  106. Fontell, K. (1990). Cubic phases in surfactant and surfactant-like lipid systems. Colloid Polym. Sci., 268, 264–285.CrossRefGoogle Scholar
  107. Fontell, K. (1992). Some aspects on the cubic phases in surfactant and surfactant-like lipid systems. Adv. Colloid Interface Sci., 41, 127–147.CrossRefGoogle Scholar
  108. Frapin, D., E. Dufour, et al. (1993). Probing fatty acid binding site of i-lactoglobulin. J. Protein Chem., 12, 443–448.CrossRefGoogle Scholar
  109. Fraser, P. E., R. P. Rand, et al. (1989). Bilayer-stabilising properties of myelin basic protein in dioleoylphosphatdiylethanolamine systems. Biochim. Biophys. Acta, 983, 23–29.CrossRefGoogle Scholar
  110. Friberg, S. (1971). Liquid crystalline phases in emulsions. J. Colloid Interface Sci., 37, 291–295.CrossRefGoogle Scholar
  111. Friberg, S., L. Mandell, et al. (1969). Mesomorphous phases a factor of importance for properties of emulsions. J. Colloid Interface Sci., 29, 155–161.CrossRefGoogle Scholar
  112. Froberg, J. C., E. Blomberg, et al. (1999). Desorption of lysozyme layers by sodium dodecyl sulfate studied with the surface force technique. Langmuir, 15, 1410–1417.CrossRefGoogle Scholar
  113. Fukushima, K., Y. Murata, et al. (1981). The binding of sodium dodecyl sulfate to lysozyme in aqueous solution. Bull. Chem. Soc. Jpn., 54, 3122–3127.CrossRefGoogle Scholar
  114. Fukushima, K., Y. Murata, et al. (1982). The binding of sodium dodecylsulfate to lysozyme in aqueous solution. II. The effect of added NaCl. Bull. Chem. Soc. Jpn., 55, 1376–1378.CrossRefGoogle Scholar
  115. Garcia Dominguez, J. J., R. Infante, et al. (1981). Interaction alkylsulphates-proteins and their adsorption at the water/air interphase. Tenside Detergents, 18, 310–313.Google Scholar
  116. Gargouri, Y., R. Julien, et al. (1984a). Studies on the inhibition of pancreatic and microbial lipases by soybean proteins. J. Lipid Res., 25, 1214–1221.Google Scholar
  117. Gargouri, Y., R. Julien, et al. (1984b). Inhibition of pancreatic and microbial lipases by proteins. Biochim. Biophys. Acta, 795, 326–331.Google Scholar
  118. Gargouri, Y., H. Moreau, et al. (1989). Role of sulphydryl group in gastric lipase. A binding study using the monomolecular film technique. Eur. J. Biochem., 180, 367–371.CrossRefGoogle Scholar
  119. Gargouri, Y., G. Pieroni, et al. (1987). Human gastric lipase - A kinetic study with dicaprin monolayers. Eur. J. Biochem., 169, 125–129.CrossRefGoogle Scholar
  120. Gargouri, Y., G. Pieroni, et al. (1986). Inhibition of lipases by proteins - a binding study using dicaprin monolayers. Biochemistry, 25, 1733–1738.CrossRefGoogle Scholar
  121. Gargouri, Y., G. Pieroni, et al. (1985). Enzyme reactions in model membranes. 8. Inhibition of lipases by proteins - a kinetic study with dicaprin monolayers. J. Biol. Chem., 260, 2268–2273.Google Scholar
  122. Gekko, K. and Y. Hasegawa (1986). Compressibility-structure relationship of globular proteins. Biochemistry, 25, 6563–6571.CrossRefGoogle Scholar
  123. Gericke, A., J. Simon-Kutscher, et al. (1993). Influence of the spreading solvent on the properties of monolayers at the air/water interface. Langmuir, 9, 2119–2127.CrossRefGoogle Scholar
  124. Green, F. A. (1971). Interactions of a nonionic detergent. II. With soluble proteins. J. Colloid Interface Sci., 35, 481–485.CrossRefGoogle Scholar
  125. Green, R. J., T. J. Su, et al. (2000). Interaction of lysozyme and sodium dodecyl sulfate at the air-liquid interface. Langmuir, 16, 5797–5805.CrossRefGoogle Scholar
  126. Green, R. J., T. J. Su, et al. (2001). The interaction between SDS and lysozyme at the hydrophilic solid-water interface. J. Phys. Chem. B, 105, 1594–1602.CrossRefGoogle Scholar
  127. Guillot, S., C. Moitzi, et al. (2006). Direct and indirect thermal transitions from hexosomes to emulsified micro-emulsions in oil-loaded monoglyceride-based particles. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 291, 78–84.CrossRefGoogle Scholar
  128. Gumpen, S., P.-O. Hegg, et al. (1979). Thermal stability of fatty acid-serum albumin complexes studied by differential scanning calorimetry. Biochim. Biophys. Acta, 574, 189–196.Google Scholar
  129. Gunning, P. A., A. R. Mackie, et al. (2004). Effect of surfactant type on surfactant-protein interactions at the air-water interface. Biomacromolecules, 5, 984–991.CrossRefGoogle Scholar
  130. Guo, X. H. and S. H. Chen (1990). The structure and thermodynamics of protein-SDS complexes in solution and the mechanism of their transports in gel electrophoresis process. Chem. Phys., 149, 129–139.CrossRefGoogle Scholar
  131. Guo, X. H., N. M. Zhao, et al. (1990). Small-angle neutron scattering study of the structure of protein/detergent complexes. Biopolymers, 29, 335–346.CrossRefGoogle Scholar
  132. Gustafsson, J., H. Ljusberg-Wahren, et al. (1996). Cubic Lipid-Water Phase Dispersed into Submicron Particles. Langmuir, 12, 4611–4613.CrossRefGoogle Scholar
  133. Gustafsson, J., H. Ljusberg-Wahren, et al. (1997). Submicron particles of reversed lipid phases in water stabilised by a nonionic amphiphilic polymer. Langmuir, 13, 6964–6971.CrossRefGoogle Scholar
  134. Gutman, H., G. Arvidson, et al. (1984). 31P and 2H NMR studies of phase equilibria in the three component system: monoolein-dioleoylphosphatidylcholine. Surfactants in Solution. K. L. Mittal and B. Lindman (Eds.) New York, Plenum. 1, pp. 143–152.Google Scholar
  135. Hambling, S. G., A. S. McAlpine, et al. (1992). b-Lactoglobulin. Advanced dairy chemistry: Vol. 1: Proteins. P. Fox (Eds.) London, Elsevier Applied Science Publishers Ltd., pp. 141–190.Google Scholar
  136. Hanssens, I. and F. H. Van Cauwelaert (1978). Shielding of phospholipid monolayers from phospholipase c hydrolysis by a-lactalbumin adsorption. Biochem. Biophys. Res. Commun., 84, 1088–1096.CrossRefGoogle Scholar
  137. Haynes, C. A. and W. Norde (1994). Globular proteins at solid/liquid interfaces. Colloids Surf. B: Biointerfaces, 2, 517–566.CrossRefGoogle Scholar
  138. Heckl, W. M., B. N. Zaba, et al. (1987). Interactions of cytochrome b5 and c with phospholipid monolayers. Biochim. Biophys. Acta, 903, 166–176.CrossRefGoogle Scholar
  139. Heertje, I., J. Nederlof, et al. (1990). The observation of the displacement of emulsifiers by confocal scanning laser microscopy. Food Struct., 9, 305–316.Google Scholar
  140. Hegg, P.-O. (1980). Thermal stability of b-lactoglobulin as a function of pH and the relative concentration of sodium dodecylsulphate. Acta Agric. Scand., 30, 401–404.CrossRefGoogle Scholar
  141. Heimburg, T., P. Hildebrandt, et al. (1991). Cytochrome c-lipid interactions studied by resonance Raman and 31P NMR spectroscopy. Correlation between the conformational changes of the protein and the lipid bilayer. Biochemistry, 30, 9084–9089.CrossRefGoogle Scholar
  142. Helfrich, W. (1989). Hats and Saddles in lipid membranes. Liq. Cryst., 5, 1647–1658.CrossRefGoogle Scholar
  143. Hill, A. V. (1910). A New mathematical treatment of changes in ionic concentration in muscle and nerve under action of electron currents with a theory as to their mode of excitation. J. Physiol., 40, 90–224.Google Scholar
  144. Horbett, T. A. (1984). Mass action effects on competitive adsorption of fibrinogen from hemoglobin solutions and from plasma. Thromb. Haemost. 174–181.Google Scholar
  145. Hønger, T., K. Jørgensen, et al. (1996). Systematic relationship between phospholipase A2 activity and dynamic lipid bilayer microheterogeneity. Biochemistry, 35, 9003–9006.CrossRefGoogle Scholar
  146. Husband, F. A., P. J. Wilde, et al. (1995). A comparison of the foaming and interfacial properties of two related lipid binding proteins from wheat in the presence of a competing surfactant. Food Macromolecules and Colloids. E. Dickinson and D. Lorient (Eds.) London, Royal Society of Chemistry, 156, pp. 283–296.Google Scholar
  147. Hyde, S. T., S. Andersson, et al. (1984). A cubic structure consisting of a lipid bilayer forming an infinite periodic minimal surface of the gyroid type in the glycerolmonooleat-water system. Z. Kristallogr., 168, 213–219.Google Scholar
  148. Hyde, S. T., A. S., et al. (1997). The Language of Shape. The Role of Curvature in Condensed Matter: Physics, Chemistry and Biology. Amsterdam, Elsevier.Google Scholar
  149. Ibdah, J. A. and M. C. Phillips (1988). Effects of lipid composition and packing on the adsorption of apolipoprotein A-I to lipid monolayers. Biochemistry, 27, 7155–7162.CrossRefGoogle Scholar
  150. Israelachvili, J. N. and G. E. Adams (1978). Measurements of forces between two mica surfaces in aqueous electrolyte solutions in the range 0–100 nm. J. Chem Soc. Faraday Trans. 1, 74, 975–1001.Google Scholar
  151. Israelachvili, J. N., D. J. Mitchell, et al. (1976). Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J. Chem. Soc. Faraday Trans. II, 72, 1525–1568.CrossRefGoogle Scholar
  152. Jirgensons, B. (1976). Conformational transitions of non-helical proteins effected by dodecylsulfate—circular dichroism of alpha1-acid glycoprotein, Bence-Jones protein, carbonic anhydrase-B, deoxyribonuclease, pepsinogen, and plasminogen. Biochim. Biophys. Acta, 434, 58–68.Google Scholar
  153. Johnsson, M., J. Barauskas, et al. (2006). Physicochemical and drug delivery aspects of lipid-based liquid crystalline nanoparticles: A case study of intravenously administered propofol. J. Nanosci. Nanotechnol., 6, 3017–3024.CrossRefGoogle Scholar
  154. Jones, M. N. and A. Brass (1991). Interaction between small amphiphatic molecules and proteins. Food, Polymers, Gels, and Colloids. E. Dickinson (Ed.) Cambridge, Royal Society of Chemistry, 82, pp. 65–80.Google Scholar
  155. Jones, M. N. and P. Manley (1979). Binding of n-alkyl sulphates to lysozyme in Aqueous solution. J. Chem. Soc. Faraday Trans. 1, 75, 1736–1744.Google Scholar
  156. Jones, M. N. and P. Manley (1980). Interaction between lysozyme and n-alkyl sulphates in aqueous solution. J. Chem. Soc. Faraday Trans. 1, 76, 654–664.Google Scholar
  157. Jones, M. N., P. Manley, et al. (1984). Cooperativity and effects of ionic strength on the binding of sodium n-dodecyl sulphate to lysozyme. Int. J. Biol. Macromol., 6, 65–68.CrossRefGoogle Scholar
  158. Jones, M. N., P. Manley, et al. (1982). Dissociation of bovine and bacterial catalases by sodium n-dodecyl sulfate. Biopolymers, 21, 1435–1450.CrossRefGoogle Scholar
  159. Kaneshina, S., M. Tanaka, et al. (1973). Interaction of bovine serum albumin with detergent cations. Bull. Chem. Soc. Jpn., 46, 2735–2738.CrossRefGoogle Scholar
  160. Kauzmann, W. (1959). Some factors in the interpretation of protein denaturation. Adv. Protein Chem., 14, 1–63.CrossRefGoogle Scholar
  161. Kim, J. and H. Kim (1986). Fusion of phospholipid vesicles induced by a-lactalbumin at acid pH. Biochemistry, 25, 7867–7874.CrossRefGoogle Scholar
  162. Kinnunen, P. K. J. (1996). On the molecular-level mechanisms of peripheral protein-membrane interactions induced by lipids forming inverted non-lamellar phases. Chem. Phys. Lipids, 81, 151–166.CrossRefGoogle Scholar
  163. Kinnunen, P. K. J. and J. M. Halopainen (2000). Mechanisms of initiation of membrane fusion: role of lipids. Biosci. Rep., 20, 465–482.CrossRefGoogle Scholar
  164. Komura, S. (1996). Shape fluctuations of vesicles. Vesicles. M. Rosoff. New York, Marcel Dekker, pp. 198–236.Google Scholar
  165. Krägel, J., R. Wüstneck, et al. (1995). Dynamic surface tension and surface shear rheology studies of mixed b-lactoglobulin/Tween 20 systems. Colloids Surfaces A: Physicochem. Eng. Aspects, 98, 127–135.CrossRefGoogle Scholar
  166. Kristensen, A., T. Nylander, et al. (1997). Interaction between b-lactoglobulin and phospholipids in solution. Int. Dairy J., 7, 82–92.CrossRefGoogle Scholar
  167. Kristensen, D., T. Nylander, et al. (1996). Bovine milk sphingomyelin at the air/water interface and its interaction with wanthine oxidase. Langmuir, 12, 5856–5862.CrossRefGoogle Scholar
  168. Kurihara, K. and Y. Katsuragi (1993). Specific inhibitor for bitter taste. Nature, 365, 213–214.Google Scholar
  169. Kuwajima, K. (1989). The molten globule state as a clue for understanding the folding and cooperativity of globular-protein structure. Proteins: Struct. Funct. Genet., 6, 87–103.CrossRefGoogle Scholar
  170. Landau, E. M. and P. L. Luisi (1993). Lipidic cubic phases as transparent, rigid matrices for the direct spectroscopic study of immobilized membrane proteins. J. Am. Chem. Soc., 115, 2102–2106.CrossRefGoogle Scholar
  171. Landau, E. M. and J. P. Rosenbusch (1996). Lipidic cubic phases: A novel concept for the crystallization of membrane proteins. Proc. Natl. Acad. Sci., 93, 14532–14535.CrossRefGoogle Scholar
  172. Landh, T. (1994). Phase behavior in the system pine needle oil monoglycerides-poloxamer 407 - water 20 °C. J. Phys. Chem., 98, 8453–8467.CrossRefGoogle Scholar
  173. Landh, T. (1995). From entangled membranes to eclectic morphologies: cubic membranes as subcellular space organisers. FEBS Lett., 369, 13–17.CrossRefGoogle Scholar
  174. Lapanje, S. (1978). Physicochemical aspects of protein denaturation. New York, Wiley.Google Scholar
  175. Larsson, K. (1983). Two cubic phases in monoolein-water system. Nature, 304, 664.CrossRefGoogle Scholar
  176. Larsson, K. (1989). Cubic lipid-water phases: Structure and biomembrane aspects. J. Phys. Chem., 93, 7304–7314.CrossRefGoogle Scholar
  177. Larsson, K. (1994). Lipids – Molecular Organization, Physical Functions and Technical Applications. Dundee, The Oily Press Ltd.Google Scholar
  178. Larsson, K. (2000). Aqueous dispersions of cubic lipid-water phases. Curr. Opin. Colloid Interface Sci., 5, 64–69.CrossRefGoogle Scholar
  179. Larsson, K. and G. Lindblom (1982). Molecular amphiphile bilayers forming a cubic phase in amphiphile-water systems. J. Disp. Sci. Technol., 3, 61–66.Google Scholar
  180. Larsson, M., K. Larsson, et al. (2002). The alveolar surface is lined by a coherent liquid-crystalline phase. Prog. Colloid Polym. Sci., 120, 28–34.CrossRefGoogle Scholar
  181. Lasic, D. D. (1993). Liposomes - from physics to applications. Amsterdam, Elsevier.Google Scholar
  182. Lasic, D. D., R. Joannic, et al. (2001). Spontaneous vesiculation. Adv. Colloid Interface Sci., 89–90, 337–349.CrossRefGoogle Scholar
  183. Leaver, J. and D. G. Dagleish (1992). Variations in the binding of b-casein to oil-water interfaces detected by trypsin-catalysed hydrolysis. J. Colloid Interface Sci., 149, 49–55.CrossRefGoogle Scholar
  184. LeNeveu, D. M., R. P. Rand, et al. (1977). Measurement and modification of forces between lecithin bilayers. Biophys. J., 18, 209–230.CrossRefGoogle Scholar
  185. Leslie, S. B., S. Puvvada, et al. (1996). Encapsulation of hemoglobin in a bicontinuous cubic phase lipid. Biochim. Biophys. Acta, 1285, 246–254.CrossRefGoogle Scholar
  186. Lindahl, L. and H. J. Vogel (1984). Metal-ion-dependent hydrophobic interaction chromatography of a-lactalbumins. Anal. Biochem., 140, 394.CrossRefGoogle Scholar
  187. Lindblom, G., K. Larsson, et al. (1979). The cubic phase of monoglyceride-water systems. Arguments for a structure based upon lamellar bilayer units. J. Am. Chem. Soc., 101, 5465–5470.CrossRefGoogle Scholar
  188. Lindblom, G. and L. Rilfors (1989). Cubic phases and isotropic structures formed by membrane lipids - possible biological relevance. Biochim. Biophys. Acta, 988, 221–256.Google Scholar
  189. Lindman, B. and H. Wennerström (1980). Micelles. Amphiphile aggregation in aqueous solution. Top. Curr. Chem., 87, 1–83.CrossRefGoogle Scholar
  190. Lindström, M., H. Ljusberg-Wahren, et al. (1981). Aqueous lipid phases of relevance to intestinal fat digestion and absorption. Lipids, 16, 749–754.CrossRefGoogle Scholar
  191. Lu, J. R., T. J. Su, et al. (1998). Binding of surfactants onto preadsorbed layers of bovine serum albumin at the silica-Water Interface. J. Phys. Chem. B, 102, 10307–10315.CrossRefGoogle Scholar
  192. Lucassen-Reynders, E. H., J. Lucassen, et al. (1981). Surface and bulk properties of mixed anionic/cationic surfactant systems. I. Equilibrium surface tensions. J. Colloid Interface Sci., 81, 150–157.CrossRefGoogle Scholar
  193. Lunkenheimer, K. and G. Czichocki (1993). On the stability of aqueous sodium dodecyl sulfate solutions. J. Colloid Interface Sci., 160, 509–510.CrossRefGoogle Scholar
  194. Lunkenheimer, K. and R. Miller (1987). A criterion for judging purity of adsorbed surfactant layers. J. Colloid Interface Sci., 120, 176–183.CrossRefGoogle Scholar
  195. Luzzati, V. (1968). X-ray diffraction studies of lipid-water systems. Biological Membranes. D. Chapman (Ed.) New York, Academic Press, pp. 77–123.Google Scholar
  196. Luzzati, V. (1997). Biological significance of lipid polymorphism: the cubic phases. Curr. Opin. Struct. Biol., 7, 661–668.CrossRefGoogle Scholar
  197. Luzzati, V., A. Tardieu, et al. (1968). Structure of the cubic phases of lipid-water systems. Nature, 220, 485–488.CrossRefGoogle Scholar
  198. Luzzati, V., R. Vargas, et al. (1992). Lipid polymorphism: A correction. The structure of the cubic phase of extinction symbol Fd− consists of two types of disjointed reverse micelles embedded in a three-dimensional matrix. Biochemistry, 31, 279–285.CrossRefGoogle Scholar
  199. Mackie, A. R., A. P. Gunning, et al. (2001a). Orogenic displacement in mixed b-lactoglobulin/b-casein films at the air/water interface. Langmuir, 17, 6593–6598.CrossRefGoogle Scholar
  200. Mackie, A. R., A. P. Gunning, et al. (2001b). In situ measurements of the displacement of protein films from the air/water interface by surfactant. Biomacromolecules, 2, 1001–1006.CrossRefGoogle Scholar
  201. Mackie, A. R., A. P. Gunning, et al. (1999). Orogenic displacement of protein from the air/water interface by competitive adsorption. J. Colloid Interface Sci., 210, 157–166.CrossRefGoogle Scholar
  202. Mackie, A. R. and P. J. Wilde (2005). The role of interactions in defining the structure of mixed protein–surfactant interfaces. Adv. Colloid Interface Sci., 117 3–13.CrossRefGoogle Scholar
  203. MacRitchie, F. (1990). Chemistry at Interfaces. San Diego, Academic Press.Google Scholar
  204. Makino, S. (1979). Interactions of proteins with amphiphatic substances. Adv. Biophys., 12, 131–184.Google Scholar
  205. Makino, S., J. A. Reynolds, et al. (1973). The binding of deoxycholate and Triton X-100 to proteins. J. Biol. Chem., 248, 4926–4932.Google Scholar
  206. Malmsten, M. (1995). Protein adsorption at phospholipid surfaces. J. Colloid Interface Sci., 172, 106–115.CrossRefGoogle Scholar
  207. Malmsten, M., P. Claesson, et al. (1994). Forces between proteoheparan sulfate layers adsorbed at hydrophobic surfaces. Langmuir, 10, 1274–1280.CrossRefGoogle Scholar
  208. Malmsten, M. and B. Lindman (1989). Ellipsometry studies of cleaning of hard surfaces—relation to the spontaneous curvature of the surfactant monolayer. Langmuir, 5, 1105–1111.CrossRefGoogle Scholar
  209. Manne, S., J. P. Cleveland, et al. (1994). Direct visualization of surfactant hemimicelles by force microscopy of the electrical double-layer. Langmuir, 10, 4409–4413.CrossRefGoogle Scholar
  210. Mariani, P., V. Luzzati, et al. (1988). Cubic phases of lipid-containing systems. Structure analysis and biological applications. J. Mol. Biol., 204, 165–189.CrossRefGoogle Scholar
  211. Mariani, P., E. Rivas, et al. (1990). Polymorphism of a lipid extract from Pseudomonas fluorescence: Structural analysis of a hexagonal phase and of a novel cubic phase of extinction symbol Fd—. Biochemistry, 29, 6799–6810.CrossRefGoogle Scholar
  212. Maste, M. C. L., W. Norde, et al. (1997). Adsorption-induced conformational changes in the serine proteinase savinase: A tryptophan fluorescence and circular dichroism study. J. Colloid Interface Sci., 196, 224–230.CrossRefGoogle Scholar
  213. Mather, I. H. (2000). A review and proposed nomenclature for major proteins of the milk-fat globule membrane. J. Dairy Sci., 83, 203–247.CrossRefGoogle Scholar
  214. Matsumura, M., W. J. Becktel, et al. (1988). Hydrophobic stabilization of T4 Lysozyme determined directly by multiple substitution of Ile 3. Nature, 334, 406–410.CrossRefGoogle Scholar
  215. Mattice, W. L., J. M. Riser, et al. (1976). Conformational properties of the complexes formed by proteins and sodium dodecyl sulfate. Biochemistry, 15, 4264–4272.CrossRefGoogle Scholar
  216. Mattisson, C., T. Nylander, et al. (1996). Diffusivity measurements by holographic laser interferometry in a cubic lipid-water phase. Chem. Phys. Lipids, 84, 1–12.CrossRefGoogle Scholar
  217. McCallum, C. D. and R. M. Epand (1995). Insulin receptor autophosphorylation and signaling is altered by modulation of membrane physical properties. Biochemistry, 34, 1815–1824.CrossRefGoogle Scholar
  218. McGuire, J., M. Wahlgren, et al. (1995a). The influence of net charge and charge location on the adsorption and dodecyltrimethylammonium bromide-mediated elutability of bacteriophage T4 lysozyme at silica surfaces. J. Colloid Interface Sci., 170, 193–202.CrossRefGoogle Scholar
  219. McGuire, J., M. C. Wahlgren, et al. (1995b). Structural stability effects on the adsorption and dodecyltrimethylammonium bromide-mediated elutability of bacteriophage T4 lysozyme at silica surfaces. J. Colloid Interface Sci., 170, 182–192.CrossRefGoogle Scholar
  220. Miller, R., V. B. Fainerman, et al. (2000a). Dynamics of protein and mixed protein/surfactant adsorption layers at the water/fluid interface. Adv. Colloid Interface Sci., 86, 39–82.CrossRefGoogle Scholar
  221. Miller, R., V. B. Fainerman, et al. (2000b). Adsorption characteristics of mixed monolayers of a globular protein and a non-ionic surfactant. Colloids Surfaces A: Physicochem. Eng. Aspects, 161, 151–157.CrossRefGoogle Scholar
  222. Miller, R. and K. Lunkenheimer (1986). A criterion for judging the purity of surfactant solutions based on diffusion controlled adsorption kinetics. Colloid Polym. Sci., 264, 273–276.CrossRefGoogle Scholar
  223. Minami, H., T. Nylander, et al. (1996). Incorporation of proteins in the lipid-water gel state. Chem. Phys. Lipids, 79, 65–70.CrossRefGoogle Scholar
  224. Mitchell, D. J. and B. W. Ninham (1981). Micelles, vesicles and microemulsions. J. Chem. Soc. Faraday Trans. 2, 77, 601–629.Google Scholar
  225. Mitchell, D. J., G. J. T. Tiddy, et al. (1983). Phase-behavior of polyoxyethylene surfactants with water-mesophase structures and partial miscibility (cloud points). J. Chem. Soc. Faraday Trans. I, 79, 975–1000.CrossRefGoogle Scholar
  226. Morén, A. K. and A. Khan (1995). The phase equilibria of an anionic surfactant - sodium dodecyl sulphate and an oppositely charged protein lysozyme in water. Langmuir, 11, 3636–3643.CrossRefGoogle Scholar
  227. Morén, A. K. and A. Khan (1998). Surfactant hydrophobic effect on the phase behavior of oppositely charged protein and surfactant mixtures: lysozyme and sodium alkyl sulfates. Langmuir, 14, 6818–6826.CrossRefGoogle Scholar
  228. Nelson, C. A. (1971). The binding of detergents to proteins. 1. The maximum amount of dodecylsulfate bound to proteins and the resistance to binding of several proteins. J. Biol. Chem., 246, 3895–3901.Google Scholar
  229. Ninham, B. W. (2002). Physical chemistry: The loss of certainty. Prog. Colloid Polym. Sci., 120, 1–12.CrossRefGoogle Scholar
  230. Nishikido, N., T. Takahara, et al. (1982). Interaction between hydrophilic proteins and nonionic detergents studied by surface tension measurements. Bull. Chem. Soc. Jpn., 55, 3085–3088.CrossRefGoogle Scholar
  231. Norde, W. (1986). Adsorption of proteins from solution at the solid-liquid interface. Adv. Colloid Interface Sci., 25, 267–340.CrossRefGoogle Scholar
  232. Norde, W. (2000). Proteins at solid surfaces. Physical Chemistry of Biological Interfaces. A. Baszkin and W. Norde. New York, Marcel Dekker, Inc., pp. 115–135.Google Scholar
  233. Nozaki, Y., J. A. Reynolds, et al. (1974). The Interaction of a Cationic Detergent with Serum Albumin and Other Proteins. J. Biol. Chem., 249, 4452–4459.Google Scholar
  234. Nylander, T., C. Mattisson, et al. (1996). A study of entrapped enzyme stability and substrate diffusion in a monoglyceride-based cubic liquid crystalline phase. Colloids Surfaces A: Physicochem. Eng. Aspects, 114, 311–320.CrossRefGoogle Scholar
  235. Ohgushi, M. and A. Wada (1983). ‘Molten-globule state’: A compact form of globular proteins with mobile side-chains. FEBS Lett., 164, 21–24.CrossRefGoogle Scholar
  236. Pace, C. N., L. M. Fisher, et al. (1981). Globular protein stability: Aspects of interest in protein turnover. Acta Biol. Med. Germ., 40, 1385–1392.Google Scholar
  237. Panaiotov, I. and R. Verger (2000). Enzymatic reactions at interfaces: Interfacial and temporal organization of enzymatic lipolysis. Physical Chemistry of Biological Interfaces. A. Baszkin and W. Norde. New York, Marcel Dekker, Inc., pp. 359–400.Google Scholar
  238. Papiz, M. J., L. Sawyer, et al. (1986). The structure of b-lactoglobulin and its similarity to plasma retinol-binding protein. Nature, 324, 383–385.CrossRefGoogle Scholar
  239. Patton, J. S. and M. C. Carey (1979). Watching fat digestion. The formation of visible product phases by pancreatic lipase is described. Science, 204, 145–148.CrossRefGoogle Scholar
  240. Patton, J. S., R. D. Vetter, et al. (1985). The light microscopy of fat digestion. Food Microstruct., 4, 29–41.Google Scholar
  241. Piéroni, G., Y. Gargouri, et al. (1990). Interactions of lipases with lipid monolayers. Facts and questions. Adv. Colloid Interface Sci., 32, 341–378.CrossRefGoogle Scholar
  242. Ponnuswamy, P. K. (1993). Hydrophobic characteristics of folded proteins. Prog. Biophys. Mol. Biol., 59, 57–103.CrossRefGoogle Scholar
  243. Portmann, M., E. M. Landau, et al. (1991). Spectroscopic and rheological studies of enzymes in rigid lipidic matrices: The case of a-chymotrypsin in a lysolecithin/water cubic phase. J. Phys. Chem., 95, 8437–8440.CrossRefGoogle Scholar
  244. Price, M. E., R. M. Cornelius, et al. (2001). Protein adsorption to polyethylene glycol modified liposomes from fibrinogen solution and from plasma. Biochim. Biophys. Acta, 1512, 191–205.CrossRefGoogle Scholar
  245. Prins, A. (1999). Stagnant surface behaviour and its effect on foam and film stability. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 149, 467–473.CrossRefGoogle Scholar
  246. Prins, A. and D. J. M. Bergink-Martens (1992). Dynamic surface properties in relation to dispersion stability. Food Colloids and Polymers: Stability and Mechanical Properties. E. Dickinson and P. Walstra (Eds.) Cambridge, The Royal Society of Chemistry, pp. 291–300.Google Scholar
  247. Privalov, P. L. (1979). Stability of proteins—small globular proteins. Adv. Protein Chem., 33, 167–241.CrossRefGoogle Scholar
  248. Privalov, P. L. (1982). Stability of proteins. Proteins which do not present a single cooperative system. Adv. Protein Chem., 35, 1–104.CrossRefGoogle Scholar
  249. Privalov, P. L. and S. J. Gill (1988). Stability of protein structure and hydrophobic interaction. Adv. Protein Chem., 39, 191–234.CrossRefGoogle Scholar
  250. Ptitsyn, O. B., R. H. Pain, et al. (1990). Evidence for a molten globule state as a general intermediate in protein folding. FEBS Lett., 262, 20–24.CrossRefGoogle Scholar
  251. Pugnaloni, L. A., E. Dickinson, et al. (2004). Competitive adsorption of proteins and low-molecular-weight surfactants: computer simulation and microscopic imaging. Adv. Colloid Interface Sci., 107, 27–49.CrossRefGoogle Scholar
  252. Puyol, P., M. D. Perez, et al. (1994). Effect of binding of retinol and palmitic acid to bovine b-lactoglobulin on its resistance to thermal denaturation. J. Dairy Sci., 77, 1494–1502.Google Scholar
  253. Qui, H. and M. Caffrey (2000). The phase diagram of the monoolein/water system: metastability and equilibrium aspects. Biomaterials, 21, 223–234.CrossRefGoogle Scholar
  254. Quinn, P. J. and R. M. C. Dawson (1969a). Interactions of cytochrome c and [14C]carboxymethylated cytochrome c with monolayers of phosphatidylcholine, phosphatidic acid and cardiolipin. Biochem. J., 115, 65–75.Google Scholar
  255. Quinn, P. J. and R. M. C. Dawson (1969b). The interaction of cytochrome c with monolayers of phosphatidylethanolamine. Biochem. J., 113, 791–803.Google Scholar
  256. Rand, R. P. (1971). Structural studies by X-ray diffraction of model lipid protein membranes of serum albumin-lecithin-cardiolipid. Biochim. Biophys. Acta, 241, 823–834.CrossRefGoogle Scholar
  257. Rapoza, R. J. and T. A. Horbett (1990a). Postadsorptive transitions in fibrinogen—Influence of polymer properties. J. Biomed. Mater. Res., 24, 1263–1287.CrossRefGoogle Scholar
  258. Rapoza, R. J. and T. A. Horbett (1990b). The effects of concentration and adsorption time on the elutability of adsorbed proteins in surfactant solutions of varying structures and concentrations. J. Colloid Interface Sci., 136, 480–493.CrossRefGoogle Scholar
  259. Raudino, A. (1995). Lateral inhomogeneous membranes: Theoretical aspects. Adv. Colloid Interface Sci., 57, 229–285.CrossRefGoogle Scholar
  260. Raudino, A. and F. Castelli (1992). A thermodynamic study of protein-induced lipid lateral phase separation. Effect of lysozyme on mixed lipid vesicles. Colloid Polym. Sci., 270, 1116–1123.CrossRefGoogle Scholar
  261. Razumas, V., J. Kanapieniené, et al. (1994). Electrochemical biosensors for glucose, lactate, urea, and creatinine based on enzymes entrapped in a cubic liquid crystalline phase. Anal. Chim. Acta, 289, 155–162.CrossRefGoogle Scholar
  262. Razumas, V., K. Larsson, et al. (1996a). A cubic monoolein-cytochrome c-water phase: X-ray diffraction, FT-IR, differential scanning calorimetry and electrochemical studies. J. Phys. Chem., 100, 11766–11774.CrossRefGoogle Scholar
  263. Razumas, V., Z. Talaikyté, et al. (1996b). Effects of distearoylphosphatidylglycerol and lysozyme on the structure of the monoolein-water cubic phase: X-ray diffraction and Raman scattering studies. Chem. Phys. Lipids, 84, 123–138.CrossRefGoogle Scholar
  264. Rendall, H. M. (1976). Use of surfactant selective electrode in the measurement of the binding of anionic surfactants to bovine serum albumin. J. Chem. Soc. Faraday Trans. 1, 72, 481–484.Google Scholar
  265. Reynolds, J., S. Herbert, et al. (1968). The binding of some long-chain fatty acid anions and alcohols by bovine serum albumin. Biochemistry, 7, 1357–1361.CrossRefGoogle Scholar
  266. Reynolds, J. A., J. P. Gallagher, et al. (1970). Effect of pH on the binding of n-alkyl sulfates to bovine serum albumin. Biochemistry, 9, 1232–1238.CrossRefGoogle Scholar
  267. Reynolds, J. A. and C. Tanford (1970). Binding of dodecyl sulfate to proteins at high binding ratios. Possible implications for the state of proteins in biological membranes. Proc. Natl. Acad. Sci., 66, 1002–1007.CrossRefGoogle Scholar
  268. Richards, F. M. (1977). Areas, volumes, packing, and protein structure. Annu. Rev. Biophys. Bioeng., 6, 151–176.CrossRefGoogle Scholar
  269. Rytömaa, M., P. Mustonen, et al. (1992). Reversible, nonionic, and pH-dependent association of cytochrome c with cardiolipin-phosphatidylcholine liposomes. J. Biol. Chem., 267, 22243–22248.Google Scholar
  270. Sagalowicz, L., M. E. Leser, et al. (2006a). Monoglyceride self-assembly structures as delivery vehicles. Trends Food Sci. Technol., 17, 204–214.CrossRefGoogle Scholar
  271. Sagalowicz, L., R. Mezzenga, et al. (2006b). Investigating reversed liquid crystalline mesophases. Curr. Opin. Colloid Interface Sci., 11, 224–229.CrossRefGoogle Scholar
  272. Sarker, D. K., P. J. Wilde, et al. (1995). Competitive adsorption of L-a-lysophosphatidylcholine/b-lactoglobulin mixtures at the interfaces of foams and foam lamellae. Colloids Surf. B Biointerfaces, 3, 349–356.CrossRefGoogle Scholar
  273. Scamehorn, J. F., R. S. Schechter, et al. (1982). Adsorption of surfactants on mineral oxide surfaces from aqueous solutions. 1. Isomerically pure anionic surfactants: 1. Isomerically pure anionic surfactants. J. Colloid Interface Sci., 85, 463–478.CrossRefGoogle Scholar
  274. Scatchard, G. (1949). The attractions of proteins for small molecules and ions. Ann. N. Y. Acad. Sci., 51, 660–672.CrossRefGoogle Scholar
  275. Schönhoff, M., M. Lösche, et al. (1992). Incorporation of membrane proteins into lipid surface monolayers: Characterisation by fluorescence and electron microscopies. Prog. Colloid Polym. Sci., 89, 243–248.CrossRefGoogle Scholar
  276. Seddon, J. M. (1990). Structure of the hexagonal (HII) phase, and non-lamellar phase transitions of lipids. Biochim. Biophys. Acta, 1031, 1–69.Google Scholar
  277. Seddon, J. M., E. A. Bartle, et al. (1990). Inverse cubic liquid crystalline phases of phospholipids and related lyotropic system. J. Phys. Condens. Matter, 2, SA285–SA290.CrossRefGoogle Scholar
  278. Seifert, U., K. Berndl, et al. (1991). Shape transformations of vesicles: Phase diagram for spontaneous-curvature and bilayer-coupling models. Phys. Rev. A, 44, 1182–1202.CrossRefGoogle Scholar
  279. Siminovitch, D. J. and K. R. Jeffrey (1981). Orientational order in the choline headgroup of sphingomyelin: A 14N-NMR study. Biochim. Biophys. Acta, 645, 270–278.CrossRefGoogle Scholar
  280. Slack, S. M. and T. A. Horbett (1988). Physicochemical and biochemical aspects of fibrogen adsorption from plasma and binary protein solutions onto polytheylene and glass, J. Colloid Interface Sci, 124, 535–551.CrossRefGoogle Scholar
  281. Spicer, P. (2005a). Cubosome processing - Industrial nanoparticle technology development. Chem. Eng. Res. Des., 83, 1283–1286.CrossRefGoogle Scholar
  282. Spicer, P. T. (2005b). Progress in liquid crystalline dispersions: Cubosomes. Curr. Opin. Colloid Interface Sci., 10, 274–279.CrossRefGoogle Scholar
  283. Spooner, P. J. R. and A. Watts (1991a). Reversible unfolding of cytochrome c upon interaction with cardiolipin bilayers. 1. Evidence from deuterium NMR measurements. Biochemistry, 30, 3871–3879.CrossRefGoogle Scholar
  284. Spooner, P. J. R. and A. Watts (1991b). Reversible unfolding of cytochrome c upon interaction with cardiolipin bilayers. 2. Evidence from phosphorus-31 NMR measurements. Biochemistry, 30, 3880–3885.CrossRefGoogle Scholar
  285. Steinhardt, J. and J. A. Reynolds (1969). Multiple equilibria in Proteins. New York, Academic Press.Google Scholar
  286. Stenstam, A., A. Khan, et al. (2001). The lysozyme-dodecyl sulfate system. An example of protein-surfactant aggregation. Langmuir, 17, 7513–7520.CrossRefGoogle Scholar
  287. Subramanian, M., B. S. Sheshadri, et al. (1984). Interaction of cationic detergents, cetyl- and dodecylatrimethylammonium bromides with lysozyme. J. Biochem. (Tokyo), 95, 413–421.Google Scholar
  288. Sukow, W. W., H. E. Sandberg, et al. (1980). Binding of the Triton X series of surfactants to bovine serum albumin. Biochemistry, 19, 912–917.CrossRefGoogle Scholar
  289. Svendsen, A. (2000). Lipase protein engineering. Biochim. Biophys. Acta, 1543, 223–238.Google Scholar
  290. Tamayo-Esquivel, D., A. Ganem-Quintanar, et al. (2006). Evaluation of the enhanced oral effect of omapatrilat-monolein nanoparticles prepared by the emulsification-diffusion method. J. Nanosci. Nanotechnol., 6, 3134–3138.CrossRefGoogle Scholar
  291. Tanford, C. (1967). Physical Chemistry of Macromolecules. New York, John Wiley & Sons.Google Scholar
  292. Tanford, C. (1980). The Hydrophobic Effect: Formation of Micelles and Biological Membranes. New York, John Wiley & Sons, Inc.Google Scholar
  293. Tanford, C. and Epstein (1954). The physical chemistry of insulin. I. Hydrogen ion titration curve of zinc-free insulin. J. Am. Chem. Soc., 76, 2163–2169.CrossRefGoogle Scholar
  294. Tanner, R. E., B. Herpigny, et al. (1982). Conformational change of protein sodium dodecylsulfate complexes in solution: A study of dynamic light scattering. J. Chem. Phys., 76, 3866–3872.CrossRefGoogle Scholar
  295. Templer, R. H. (1998). Thermodynamic and theoretical aspects of cubic mesophases in nature and biological amphiphiles. Curr. Opin. Colloid Interface Sci., 3, 255–263.CrossRefGoogle Scholar
  296. Tiberg, F. (1996). Physical characterization of non-ionic surfactant layers adsorbed at hydrophilic and hydrophobic solid surfaces by time-resolved ellipsometry. J. Chem. Soc. Faraday Trans., 92, 531–538.CrossRefGoogle Scholar
  297. Tilton, R. D., E. Blomberg, et al. (1993). Effect of anionic surfactant on interactions between lysozyme layers adsorbed on mica. Langmuir, 9, 2102–2108.CrossRefGoogle Scholar
  298. van der Goot, F. G., J. M. González-Mañas, et al. (1991). A ‘molten-globule’ membrane-insertion intermediate of the pore-forming domain of colicin A. Nature, 354, 408–410.CrossRefGoogle Scholar
  299. Vandoolaeghe, P., F. Tiberg, et al. (2006). Interfacial behavior of cubic liquid crystalline nanoparticles at hydrophilic and hydrophobic surfaces. Langmuir, 22, 9169–9174.CrossRefGoogle Scholar
  300. Verger, R. (1997). ‘Interfacial activation’ of lipases: facts and artifacts. Trends Biotechnol., 15, 32–38.CrossRefGoogle Scholar
  301. Vollhardt, D. (1993). Nucleation and growth in supersaturated monolayers. Adv. Colloid Interface Sci., 47, 1–23.CrossRefGoogle Scholar
  302. Vollhardt, D. and V. B. Fainerman (2000). Penetration of dissolved amphiphiles into two-dimensional aggregating lipid monolayers. Adv. Colloid Interface Sci., 86, 103–151.CrossRefGoogle Scholar
  303. Vollhardt, D., T. Kato, et al. (1996). Nucleation and growth of three-dimensional structures in supersaturated arachidic acid monolayers: an Atomic Force Microscopy Study. J. Phys. Chem., 100, 4141–4147.CrossRefGoogle Scholar
  304. Vroman, L., A. L. Adams, et al. (1980). Interaction of high molecular weight kininogen, factor XII and fibrinogen in plasma at interfaces. Blood, 55, 156–159.Google Scholar
  305. Wahlgren, M. and T. Arnebrant (1996). Removal of lysozyme from methylated silicon oxide surfaces by a non-ionic surfactant, pentaethylene glycol mono n-dodecyl ether (C(12) E(5)). Colloids Surf. B Biointerfaces, 6, 63–69.CrossRefGoogle Scholar
  306. Wahlgren, M., S. Welin-Klintström, et al. (1995). Competition between fibrinogen and a non-ionic surfactant in adsorption to a wettability gradient surface. Colloids Surf. B Biointerfaces, 4, 23–31.CrossRefGoogle Scholar
  307. Wahlgren, M. C. and T. Arnebrant (1991). Interaction between cetyltrimethylammonium bromide and sodium dodecyl sulfate wit b-lactoglobulin and lysozyme. J. Colloid Interface Sci., 142, 503–511.CrossRefGoogle Scholar
  308. Wahlgren, M. C. and T. Arnebrant (1992). The concentration dependence of adsorption from a mixture of b-lactoglobulin and sodium dodecyl sulfate onto methylated silica surfaces. J. Colloid Interface Sci., 148, 201–206.CrossRefGoogle Scholar
  309. Wahlgren, M. C., T. Arnebrant, et al. (1993a). The elutability of fibrinogen by sodium dodecyl sulphate and alkyltrimethylammonium bromides. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 70, 151–158.CrossRefGoogle Scholar
  310. Wahlgren, M. C., M. A. Paulsson, et al. (1993b). Adsorption of Globular Model Proteins to Silica and Methylated Silica Surfaces and their Elutability by Dodecyltrimethylammonium Bromide. Colloid Surfaces A, 70, 139–149.CrossRefGoogle Scholar
  311. Wallin, R. and T. Arnebrant (1994). The activity of lipase at the cubic liquid-crystalline phase/water interface. J. Colloid Interface Sci., 164, 16–20.CrossRefGoogle Scholar
  312. Wallin, R., S. Engström, et al. (1993). Stabilisation of glucose oxidase by entrapment in a cubic liquid crystalline phase. Biocatalysis, 8, 73–80.CrossRefGoogle Scholar
  313. Wallis, B. A. (1986). Structure of gramicidin A. Biophys. J., 49, 295–306.CrossRefGoogle Scholar
  314. Walstra, P. (2002). Physical Chemistry of Foods. New York, Marcel Dekker Inc.Google Scholar
  315. Waninge, R., T. Nylander, et al. (2003). Milk membrane lipid vesicle structures studied with Cryo-TEM. Colloids Surf. B Biointerfaces, 31, 257–264.CrossRefGoogle Scholar
  316. Waninge, R., M. Paulsson, et al. (1998). Binding of sodium dodecyl sulphate and dodecyl trimethyl ammonium chloride to b-lactoglobulin: a calorimetric study. Int. Dairy J., 8, 141–148.CrossRefGoogle Scholar
  317. Waninge, R., P. Walstra, et al. (2005). Competitive adsorption between beta-casein or beta-lactoglobulin and model milk membrane lipids at oil-water interfaces. J. Agric. Food Chem., 53, 716–724.CrossRefGoogle Scholar
  318. Wannerberger, K., M. Wahlgren, et al. (1996). Adsorption from lipase surfactant solutions onto methylated silica surfaces. Colloids Surf. B Biointerfaces, 6, 27–36.CrossRefGoogle Scholar
  319. Welin-Klintström, S., A. Askendal, et al. (1993). Surfactant and protein interactions on wettability gradient surfaces. J. Colloid Interface Sci., 158, 188–194.CrossRefGoogle Scholar
  320. Westesen, K. and T. Wehler (1993). Investigation of the particle-size distribution of a model intravenous emulsion. J. Pharm. Sci., 82, 1237–1244.CrossRefGoogle Scholar
  321. Wijmans, C. M. and E. Dickinson (1999). Brownian dynamics simulation of the displacement of a protein monolayer by competitive absorption. Langmuir, 15, 8344–8348.CrossRefGoogle Scholar
  322. Wilde, P. J. (2000). Interfaces: their role in foam and emulsion behaviour. Curr. Opin. Colloid Interface Sci., 5, 176–181.CrossRefGoogle Scholar
  323. Wilde, P. J. and D. C. Clark (1993). The competitive displacement of W-lactoglobulin by Tween 20 from oil-water and air-water interfaces. J. Colloid Interface Sci., 155, 48–54.CrossRefGoogle Scholar
  324. Wilde, P. J., D. C. Clark, et al. (1993). Influence of competitive adsorption of a lysopalmitoylphosphatidylcholine on the functional properties of puroindoline, a lipid-binding protein isolated from wheat flour. J. Agric. Food Chem., 41, 1570–1576.CrossRefGoogle Scholar
  325. Williams, R. J., J. N. Phillips, et al. (1955). The critical micelle concentration of sodium lauryl sulphate at 25 °C. Trans. Faraday Soc., 51, 728–737.CrossRefGoogle Scholar
  326. Worle, G., B. Siekmann, et al. (2006). Transformation of vesicular into cubic nanoparticles by autoclaving of aqueous monoolein/poloxamer dispersions. Eur. J. Pharm. Sci., 27, 44–53.CrossRefGoogle Scholar
  327. Yaghmur, A., L. de Campo, et al. (2006). Oil-loaded monolinolein-based particles with confined inverse discontinuous cubic structure (Fd3m). Langmuir, 22, 517–521.CrossRefGoogle Scholar
  328. Yamamoto, Y. and M. Araki (1997). Effects of lecithin addition in oil or water phase on the stability of emulsions made with whey proteins. Biosci. Biotechnol. Biochem., 61, 1791–1795.CrossRefGoogle Scholar
  329. Yonath, A., A. Podjarny, et al. (1977a). Crystallographic studies of protein denaturation and renaturation. 2. Sodium dodecyl sulfate induced conformational changes in triclinic lysozyme. Biochemistry, 16, 1418–1424.CrossRefGoogle Scholar
  330. Yonath, A., A. Sielecki, et al. (1977b). Crystallographic studies of protein denaturation and renaturation. 1. Effects of denaturants on volume and x-ray pattern of cross-linked triclinic lysozyme crystals. Biochemistry, 16, 1413–1417.CrossRefGoogle Scholar
  331. Zhang, R. and P. Somasundaran (2006). Advances in adsorption of surfactants and their mixtures at solid/solution interfaces. Adv. Colloid Interface Sci., 123, 213–229.CrossRefGoogle Scholar
  332. Zhao, J., D. Vollhardt, et al. (2000). Effect of protein penetration into phospholipid monolayers: morphology and structure. Colloids Surfaces A: Physicochem. Eng. Aspects, 171, 175–184.CrossRefGoogle Scholar
  333. Zhmud, B. and F. Tiberg (2005). Interfacial dynamics and structure of surfactant layers. Adv. Colloid Interface Sci., 113, 21–42.CrossRefGoogle Scholar
  334. Zoungrana, T., G. H. Findenegg, et al. (1997). Structure, stability, and activity of adsorbed enzymes. J. Colloid Interface Sci., 1997, 437–448.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Tommy Nylander
    • 1
  • Thomas Arnebrant
    • 2
  • Martin Bos
    • 3
  • Peter Wilde
    • 4
  1. 1.Center for Chemistry and Chemical EngineeringLund UniversitySweden
  2. 2.Biomedical laboratory science, Health and societyMalmö UniversityMalmö
  3. 3.Manager Toxicology & Applied Pharmacology DepartmentBusiness Unit Quality & Safety, TNO Quality of LifeNetherlands
  4. 4.Food Materials Science DivisionInstitute of Food Research, Norwich Research ParkUK

Personalised recommendations