Advertisement

Analysis of Food Emulsifiers

  • Gerard L. Hasenhuettl

Analytical methods used to measure food emulsifiers are derived from lipid analysis (Firestone, 2001; Otles, 2004; Wood et al., 2004; Byrdwell, 2005a). Test Methods are of several types and are carried out for several reasons. Food additives are regulated by government agencies to ensure health and safety. Specifications may be set for starting materials, products, processing methods, and maximum use levels in foods. Tests may also be necessary to ensure the absence of degradation products, microorganisms and foreign materials. Composition of emulsifiers may be related to their functional performance in finished foods. Nongovernmental specifications for food emulsifiers may be negotiated between the supplier and the customer, usually a processed food producer. Tests nay be carried out in the manufacturer’s processing line or control laboratory, after which the manufacturer may issue a certificate of analysis. The customer may check the analyses as part of the receiving process, and accept or reject the shipment. Disputes may be submitted to an independent testing laboratory for resolution. Standardized test methods have been developed by professional societies, such as, the Association of Official Analytical Chemists (AOAC) (Horvitz, 2005), the American Oil Chemists Society (AOCS) (Firestone, 2005a), the International Union of Pure and Applied Chemistry (IUPAC) (Paquot and Hauffen, 1987), Leatherhead Foods Research Association, and the National Academy of Sciences (Food Chemicals Codex) (Codex, 2004).

To determine emulsifiers in intact food products, fats and emulsifiers must first be extracted. Fats and oils are soluble in nonpolar solvents, such as hexane and toluene. However, emulsifiers are amphiphilic and therefore, less soluble, particularly when emulsifier concentration is high compared to total lipid. Chloroform and chloroform/ methanol have been effective for extraction of emulsifiers (Flor and Prager, 1980). Because these solvents are classified as hazardous waste, provisions should be made for recycling. In cases where the lipid concentration is high relative to emulsifier concentration, extraction with hot hexane, followed by acetonitrile was reported (Halverson and Qvist, 1974). Solid samples (e.g., cakes or powdered coffee whiteners) may be conveniently extracted in a Soxhlet extraction apparatus. Liquid samples (e.g., milk or ice cream mix) are generally extracted in a separatory funnel or countercurrent distribution apparatus. Another factor complicating extraction is that emulsifiers may be tightly complexed with starches or proteins, or may be encapsulated in a biopolymer matrix. Pretreatment with amylase enzyme may overcome this problem (Jodlbauer, 1976).

Keywords

High Performance Liquid Chromatography Sucrose Ester Food Emulsifier Slip Melting Point Polyglycerol Ester 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Biacs, O. et al. (1978). Acta Aloment Acad. Sci. Hung. 7(3): 181–93.Google Scholar
  2. Blanco, M. et al. (2004). Anal. Chim. Acta 521(13): 143–8.CrossRefGoogle Scholar
  3. Bosco, M. et al. (1997). Anal. Biochem. 245(1): 38–47.CrossRefGoogle Scholar
  4. Bruemmer, J. M. (1971). Brot Gebaeck 25(11): 217–20.Google Scholar
  5. Brueschweiler, H. (1977). Mitt. Geb. Lebensmittelunters. Hyg. 68(1): 46–63.Google Scholar
  6. Brueschweiler, H. and Dieffenbacher, A. (1991). Pure Appl. Chem. 63(8): 1153–62.CrossRefGoogle Scholar
  7. Bruns, A. (1988). Fett Wiss. Technol. 90(8): 289–91.CrossRefGoogle Scholar
  8. Byrdwell, W. C. (2005a). Modern Methods for Lipid Analysis by Liquid Chromatography/Mass Spectrometry and Related Techniques. Champaign, American Oil Chemists’ Society.CrossRefGoogle Scholar
  9. Byrdwell, W. C. (2005b). Atmospheric Pressure Ionization Techniquws in Modern Lipid Analysis. Modern Methods for Lipid Analysis. W. C. Byrdwell. Champaign, IL, American Oil Chemists Society: 1–18.CrossRefGoogle Scholar
  10. Byrdwell, W. C. (2005c). Dual Parallel Liquid Chromatography/Mass Spectrometry for Lipid Analysis. Modern Methods for Lipid Analysis. W. C. Byrdwell. Champaign, IL, American Oil Chemists Society: 510–76.CrossRefGoogle Scholar
  11. Cai, S.-S. and Syage, I. (2006). J. Chromatogr. AII 10: 15–26.CrossRefGoogle Scholar
  12. Christie, W. W. (1992). Detectors for High Performance Liquid Chromatography of Lipids with Special Reference to Evaporative Light Scattering Detection. Advances in Lipid Methhodology. W. W. Christie. Ayr, Scotland, The Oily Press. One: 269–72.Google Scholar
  13. Christie, W. W. (1996). Separation of Phospholipid Classes by High Performance Liquid Chromatography. Advances in Lipid Methodology. W. W. Christie. Ayr, Scotland, The Oily Press. Three: 77–108.Google Scholar
  14. Codex, F. C. (2004). Food Chemicals Codex: Effective January 1, 2004, Washington, National Academies Press.Google Scholar
  15. Dang, H. V. et al. (2006). J. Pharm. Biomed. Anal. 40(5): 155–65.Google Scholar
  16. Daniels, D. H. (1982). J. Assoc. Off. Anal. Chem. 65(1): 162–5.Google Scholar
  17. Daniels, D. H. et al., (1985). J. Agric. Food Chem. 33(3): 368–72.CrossRefGoogle Scholar
  18. DeMeulenaer, B. et al. (2000). H. Chromatogr. 896(1–2): 239–51.CrossRefGoogle Scholar
  19. Dieffenbacher, A. et al. (1988). Rev. Fr. Corps Gras 35(12): 495–9.Google Scholar
  20. Dieffenbacher, A. et al. (1989). Rev. Fr. Corps Gras 36(2): 64.Google Scholar
  21. Diepenmaat-Walters, M. G. E. et al. (1997). J. Am. Soc. Brew. Chem. 55(4): 147–52.Google Scholar
  22. Duden, R. and Fricker, A. (1977). Fette Seifen Anstrichm. 79(12): 489–91.CrossRefGoogle Scholar
  23. El-Sebaiy, L. A. et al. (1980). Food Chem. 5(3): 217–28.CrossRefGoogle Scholar
  24. Erdahl, W. L. et al. (1973). J. Am. Oil Chem. Soc. 50(12): 513–5.CrossRefGoogle Scholar
  25. Everts, S. and Davis, J. H. (2000). Biophys. J. 79(2): 885–7.CrossRefGoogle Scholar
  26. Filip, V. and Kleunova, M. (1993). Z. Lebensm. Unters. Forsch 196(6): 532–35.CrossRefGoogle Scholar
  27. Firestone, D. (2001). Physical and Chemical Characteristics of Oils, Fats, and Waxes. Champaign, IL, The American Oil Chemists Society.Google Scholar
  28. Firestone, D., Ed. (2005a). Official Methods and Recommended Practices of the AOCS. Champaign, IL, The American Oil Chemists Society.Google Scholar
  29. Firestone, D., Ed. (2005b). AOCS Recommended Practice Cd-11c–93: Quantitative Separation of Monoglycerides, Diglycerides, and Triglycerides by Silica Gel Column Chromatography.Google Scholar
  30. Firestone, D., Ed. (2005c). AOCS Recommended Practice Ja 7–86: Phospholipids in Lecithin Concentrates by Thin Layer Chromatography.Google Scholar
  31. Firestone, D., Ed. (2005d). AOCS Official Method Cd 11–57: alpha-Monoglycerides.Google Scholar
  32. Firestone, D., Ed. (2005e). AOCS Official Method Ca 14–56: Total Free and Combined Glycerol: -Iodimetric -Periodic Acid Method.Google Scholar
  33. Firestone, D., Ed. (2005f). AOCS Official Method Cd 3d–63: Acid Value.Google Scholar
  34. Firestone, D., Ed. (2005g). AOCS Official Method Ca 5a–40: Free Fatty Acids.Google Scholar
  35. Firestone, D., Ed. (2005h). AOCS Official Method Tg 1–64: Iodine Value-Wijs method & AOCS Recommended Practice Ja 14–91: Iodine Value—Wijs Method (for lecithin).Google Scholar
  36. Firestone, D., Ed. (2005i). AOCS Recommended Practice Cd 1b–87: Iodine Value of Fats and Oils—Cyclohexane Method.Google Scholar
  37. Firestone, D., Ed. (2005j). AOCS Official Method Cd 8–53: Peroxide Value - Acetic Acid-Chloroform Method & AOCS Official Method Ja 8–87: Peroxide Value (for lecithin).Google Scholar
  38. Firestone, D., Ed. (2005k). AOCS Official Method Cd 8b–90: Peroxide Value—Acetic Acid-Isooctane Method.Google Scholar
  39. Firestone, D., Ed. (2005l). AOCS Recommended Practice Cd 3c–91: Saponification Value —Modified Method Using Methanol & AOCS Official Method Tl 1a–64: Saponification Value.Google Scholar
  40. Firestone, D., Ed. (2005m). AOCS Official Method Cd 13–60: Hydroxyl Value.Google Scholar
  41. Firestone, D., Ed. (2005n). AOCS Official Method Cd 5–40: Reichert-Meisel, Polanske, amd Kirschner Values—Modified AOAC Methods.Google Scholar
  42. Firestone, D., Ed. (2005o). AOCS Official Method Ca 2e–84: Moisture—Karl Fischer Reagent.Google Scholar
  43. Firestone, D., Ed. (2005p). AOCS Official Method Tb 2–64: Moisture - Modified Karl Fischer Reagent.Google Scholar
  44. Firestone, D., Ed. (2005q). AOCS Official Method Ja 2b–87: Moisture - Karl Fischer Reagent.Google Scholar
  45. Firestone, D., Ed. (2005r). AOCS Recommended Practice Cc 17–95: Soap in Oil.Google Scholar
  46. Firestone, D., Ed. (2005s). AOCS Official Method Ca 12–55: Phosphorous, and AOCS Official Method Ca 12a–02L Colorimetric Determination of Phosphorous Content in Fats and Oils.Google Scholar
  47. Firestone, D., Ed. (2005t). AOCS Official Method Cc 13a–92: Color—Lovibond Method Using Color Glasses Calibrated in Accordance with the Lovibond Tintometer Color Scale.Google Scholar
  48. Firestone, D., Ed. (2005u). AOCS Official Method Cc 13b–45: Color—Wesson Method Using Colored Glasses Calibrated in Accordance with the AOCS Tintometer Scale.Google Scholar
  49. Firestone, D., Ed. (2005v). AOCS Official Method Ja 9–87: Gardner Color and AOCS Official Method Jd 1a–64 Color—Gardner 1963 (Gardner Standards).Google Scholar
  50. Firestone, D., Ed. (2005w). AOCS Official Method Cc 13a–43: Color—FAC Standard Color.Google Scholar
  51. Firestone, D., Ed. (2005x). AOCS Official Method Td 2a–64: Color—Photometric Index and AOCS Official Method Cc 13c–50: Color—Spectrophotometric Method.Google Scholar
  52. Firestone, D., Ed. (2005y). AOCS Official Method Cc 7–25: Refractive Index and AOCS Official Method Tp 1a–64: Refractive Index.Google Scholar
  53. Firestone, D., Ed. (2005z). AOCS Official Method Cc 1–25: Melting Point—Capillary Tube Method.Google Scholar
  54. Firestone, D., Ed. (2005aa). AOCS Official Method Cc 3–25: Slip Melting Point—AOCS Standard Open Tube Melting Point and AOCS Official Metjod Cc 3b–92:Slip Melting Point—ISO Standard.Google Scholar
  55. Firestone, D., Ed. (2005ab). AOCS Official Method Cc 18–80: Dropping Point.Google Scholar
  56. Firestone, D., Ed. (2005ac). AOCS Official Methods Ja 11–87 and Tq 1a–64: Viscosity of Transparent Liquids by Bubble Time Method.Google Scholar
  57. Firestone, D., Ed. (2005ad). AOCS Recommended Practice Ja 10–87: Brookfield Viscosity.Google Scholar
  58. Firestone, D., Ed. (2005ae), AOCS Official Method Cc 10a–25: Specific Gravity of Liquid Oils and Fats.Google Scholar
  59. Firestone, D., Ed. (2005af). AOCS Official Method Cc 10b–25: Specific Gravity of Solid Fats and Waxes.Google Scholar
  60. Firestone, D., Ed. (2005ag). AOCS Official Method Ce 1–62: Fatty Acid Composition by Gas Cjromatography.Google Scholar
  61. Firestone, D., Ed. (2005ah). AOCS Official Method Cd 11b–91: Determination of Mono- and Diglycerides by Capillary Gas Chromatography.Google Scholar
  62. Firestone, D., Ed. (2005ai). AOCS Recommended Practice Cd 25–96: Heat Transfer Fluids in Oils—DowthermTM by GC.Google Scholar
  63. Firestone, D., Ed. (2005aj). AOCS Official Method Cd 11d–96: Mono and Diglycerides Determination by HPLC-ELSD and AOCS Official Method Ja 7b–91: Determination of Lecithin Phospholipids by HPLC.Google Scholar
  64. Firestone, D., Ed. (2005ak). AOCS Official Method Ca 14b–96: Quantification of Free Glycerine in Selected Glycerides and Fatty Acid Methyl Esters by HPLC and Laser Light-Scattering Detection.Google Scholar
  65. Firestone, D., Ed. (2005al). AOCS Recommended Practice Cd 25a–00: Thermal Heating Fluids in Edible Oils and Oleochemicals—Dowtherm A by HPLC Coupled with Fluorescence Detector.Google Scholar
  66. Firestone, D., Ed. (2005am). AOCS Official Method Ca 12a–02: Colorimetroc Determination of Phosphprous Content in Fats and Oils.Google Scholar
  67. Firestone, D., Ed. (2005an). AOCS Recommended Practice Cd 1e–01: Determination of Iodine Value by Pre-calibrated FT-NIR with Disposable Vials.Google Scholar
  68. Firestone, D., Ed. (2005ao). AOCS Official Method Ca 18c–91: Determination of Lead by Direct Graphite Furnace Atomic Absorption Spectrophotometry.Google Scholar
  69. Firestone, D., Ed. (2005ap). AOCS Official Method Ca 15–75: Analysis for Chromoim, Copper, Iron, and Nickel in Vegetable Oils by Atomic Absorption Spectrophotometry.Google Scholar
  70. Firestone, D., Ed. (2005aq). AOCS Recommended Practice Ca 15b–87: Sodium and Calcium by Atomic Absorption Spectrophotomrytu amf AOCS Recommended Practice Ca 17–01: Determination of Trace Elements (Calcium, Copper, Iron, Magnesium, Nickel, Silicon, Sodium, Lead, and Cadmium) in Oil by Inductuvely Coupled Plasma Optical Emmision Spectroscopy.Google Scholar
  71. Firestone, D., Ed. (2005ar). AOCS Official Method Cd 16b–93: Solid Fat Content (SFC) by Low-Resolution Nuclear Magnetic Resonance - The Direct Method and AOCS Official Method Cd 16–81: Solid Fat Content (SFC) by Low-Resolution Nuclear Magnetic Resonance - The Indirect Method.Google Scholar
  72. Flor, E. V. and Prager, M. J. (1980). J. Assoc. Off. Anal. Chem. 63(1): 22–6.Google Scholar
  73. Franzke, C. (1977). Z. Lebensm. Unters. Forsch. 163(3): 206–7.CrossRefGoogle Scholar
  74. Franzke, C. and Kroll, J. (1980). Nahrung 24(1): 89–90.CrossRefGoogle Scholar
  75. Frison-Norrie, S. S., P. (2001). J. Agric. Food Chem. 49(7): 3335–40.CrossRefGoogle Scholar
  76. Gaonkar, A. and NcPherson, A., Ed. (2005). Ingredient Interactions: Effects on Food Quality. Food Science and Technology. Boca Raton, CRC Press.Google Scholar
  77. Garti, N. (1981). J. Liq. Chromatogr. 4(7): 1173–94.CrossRefGoogle Scholar
  78. Garti, N. and Ascerin, A. (1983). J. Am. Oil Chem. Soc. 60(6): 1151–4.CrossRefGoogle Scholar
  79. Gillet, B. et al. (1998). Analysis 26(3): M26–M33.CrossRefGoogle Scholar
  80. Glonek, T. and Merchant, R. E. (1996). 31P Nuclear Magnetic Resonance Profiling of Phospholipids. Advances in Lipid Methodology. W. W. Christie. Ayr, Scotland, The Oily Press. Three, 37–75.Google Scholar
  81. Goldstein, S. (1984). U. S. 4, 473, 651 A.Google Scholar
  82. Grdadolnik, J. and Hadm, D. (1993). Chem. Phys. Lipids 65(2): 121–32.CrossRefGoogle Scholar
  83. Gunstone, F. G. (1993). High Resolution 13C NMR Spectroscopy of Lipids. Advances in Lipid Methodology. W. W. Christie. Ayr, Scotland, The Oily Press. Two, 1–68.Google Scholar
  84. Halverson, H. and Qvist, O. (1974). J. Am. Oil Chem. Soc. 51(4): 162–5.CrossRefGoogle Scholar
  85. Ham, X. and Gross, R. W. (2005). Toward Total Cellular Lipidome Analysis by ESI Mass Spectrometry from a Crude Lipid Extract. Modern Methods for Lipid Analysis. W. C. Byrdwell. Champaign, IL, American Oil Chemists Society: 488–509.Google Scholar
  86. Hartman, L. et al. (1980). Analyst 105(1247): 173–6.CrossRefGoogle Scholar
  87. Hasenhuettl, G. L. et al. (1990). J. Am. Oil Chem. Soc. 67(11): 797–9.CrossRefGoogle Scholar
  88. Horvitz, W. Ed. (2005). Official Methods of Analysis of AOAC International. AOAC International, Gaithersburg, MD.Google Scholar
  89. Hsieh, J. Y. et al. (1981). J. Chromatogr. 208(2): 398–403.CrossRefGoogle Scholar
  90. Hummel, D. (2000a). Handbook of Surfactant Analysis. New York, John Wiley & Sons: 232.Google Scholar
  91. Hummel, D. (2000b). Handbook of Surfactant Analysis. New York, John Wiley & Sons: 233.Google Scholar
  92. Hurst, W. J. and Martin, R. A. (1984). J. Am. Oil Chem. Soc. 61(9): 1462–3.CrossRefGoogle Scholar
  93. Huyghebaert, G. and Baert, L. (1992). Chromatographia 34(11–12): 557–62.Google Scholar
  94. Ingber, N. (1986). Determinarion of Hydroxyl Value by NIR, Personal Communication.Google Scholar
  95. Istratov, V. et al. (2003). Tetrahedron 59(22): 4017–24.CrossRefGoogle Scholar
  96. Jakubska, E. et al. (1977). Acta Aliment Pol. 3(1): 79–84.Google Scholar
  97. Jodlbauer, H. D. (1976). Getreide Mehl Brot 30(7): 181–7.Google Scholar
  98. Judlbauer, H. D. (1981). Veroeff. Arbeitsgem. Getreideforsch 183: 42–9.Google Scholar
  99. Kaitaranta, J. K. and Bessman, S. P. (1981) Anal. Chem 53(8): 1232–1235.CrossRefGoogle Scholar
  100. Kanematsu, H. et al. (1972). Eiyo Shokuryo 25(1): 46–50.Google Scholar
  101. Karrer, R. and Herbertg, H. (1992). J. High Res. Chromatog. 15(9): 585–9.CrossRefGoogle Scholar
  102. Kato, H. et al. (1989). J. Assoc. Offic. Anal. Chem. 72(1): 27–9.Google Scholar
  103. Kimura, S. et al. (1969). Nippon Shokuhin Kogyo Gakkai-shi 16(9): 425–9.Google Scholar
  104. Kostelnik, R. J. and Castellano, S. M. (1973). J. Magn. Reson. 9(2): 291–5.Google Scholar
  105. Kumar, T. N. et al. (1984). J. Chromatog. A 298: 360–5.CrossRefGoogle Scholar
  106. Larsen, A. and Hyattumff, E. (2005). Analysis of Phospholipids by Liquid Chromatography Coupled with On-line Electrospray Ionization Mass Spectrometry and Tandem Mass Spectrometry. Modern Methods for Lipid Analysis. W. C. Byrdwell. Champaign, IL, American Oil Chemists Society, 19–60.Google Scholar
  107. Lee, T. (1988). J. Assoc. Off. Anal. Chem. 71(4): 785–8.Google Scholar
  108. Lee, T. et al. (1993). J. Am. Oil Chem. Soc. 70(4): 343–7.CrossRefGoogle Scholar
  109. Lendrath, G. (1990). J. Chromatogr. 502(2): 385–92.CrossRefGoogle Scholar
  110. Lew, H. (1975). Veroff. Landwirtsch. Chem. Bundesversuchsanst. Linz 97(10): 10.Google Scholar
  111. Li, Y.-K. et al. (2002). Sepu 20(5): 476–478.Google Scholar
  112. Lindblom, G. (1996). Nuclear Magnetic Spectroscopy and Lipid Phase Behavior and Lipid Diffusion. Advances in Lipid Methodology. W. W. Christie. Ayr, Scotland, The Oily Press. Three, 132–99.Google Scholar
  113. Lundquist, G. and Meloan, C. (1971). Anal. Chem. 43(8): 1122–3.CrossRefGoogle Scholar
  114. Luquain, C. et al. (2001). Anal. Biochem. 296(1): 41–48.CrossRefGoogle Scholar
  115. Macka, M. et al. (1994). J. Chromatogr. 675(1–2): 267–70.CrossRefGoogle Scholar
  116. Martin, E. et al. (1989). Mitt. Geb. Lebensmittelunters Hyg. 79(4): 406–12.Google Scholar
  117. Mazur, A. W. et al. (1991). Chem. Phys. Lipids 60(2): 189–99.CrossRefGoogle Scholar
  118. Melton, S. L. (1992). J. Am. Oil Chem. Soc. 69(8): 784–8.CrossRefGoogle Scholar
  119. Moelering, H. and Bergmeyer, H. U. (1974). Methoden Enzym. Anal. 3. Neubearbeitete Erweite:Te Aufl. H. Bergmeyer. New York, Academic. 2: 1860–4.Google Scholar
  120. Mueller, H. (1977). Fette Seifen Anstrichm. 79(6): 259–61.CrossRefGoogle Scholar
  121. Murakami, C. et al. (1989). Shokuhin Eiseigaku Zasshi 30(4): 306–13.Google Scholar
  122. Murgia, S. et al. (2003). Lipids 38(5): 585–91.CrossRefGoogle Scholar
  123. Murohy, J. and Grislett, L. (1969). J. Am. Oil Chem. Soc. 46(7): 384.CrossRefGoogle Scholar
  124. Murphy, J. M. and Hibbert, H. R. (1969). J. Food Technol. 4(3): 227–34.CrossRefGoogle Scholar
  125. Murphy, J. M. and Scott, C. C. (1969). Analyst 94(1119): 481–3.CrossRefGoogle Scholar
  126. Nakanishi, H. and Tsuda, T. (1983). Shokuhin Eisergaku Zasshi 24(5): 474–9.Google Scholar
  127. Nunez, A. et al. (2005). Liquid Chromatography/Mass Sprvtrometry Analysis of Biosurfactant Glycolipids. Modern Methods for Lipid Analysis. W. C. Byrdwell. Champaign, IL, American Oil Chemists Society: 447–71.Google Scholar
  128. Olsson, U. et al. (1990). J. Planar. Chromatogr.–Mod. TLC 3: 55–60.Google Scholar
  129. Paganuzzi, V. (1987). Riv. Ital. Sostanze Grasse 61(10): 411–14.Google Scholar
  130. Paquot, C. and Hauffen, A. (Eds.) (1987). IUPAC Standard Methods of Analysis of Oils, Fats, and Derivatives. London, Blackwell.Google Scholar
  131. Pohle, W. et al. (1997). J. Mol. Struct. 408–409: 273–7.CrossRefGoogle Scholar
  132. Press, K. et al. (1981). J. Agric. Food Chem. 29(5): 1096–8.CrossRefGoogle Scholar
  133. Ranger, B. and Wenz, K. (1989). J. Planar. Chromatogr.–Mod. TLC 2(1): 24–7.Google Scholar
  134. Regula, E. (1975). J. Chromatogr. 115(2): 639–44.CrossRefGoogle Scholar
  135. Rhee, J. S. and Shin, M. G. (1982). J. Am. Oil Chem. Soc. 59(2): 98–9.CrossRefGoogle Scholar
  136. Rilsom, T. and Hoffmayer, L. (1978). J. Am. Oil Chem. Soc. 55(9): 649–52.CrossRefGoogle Scholar
  137. Sacchi, P. et al. (1990). Revista Italiano delle Sostanze Grasse 67(5): 245–52.Google Scholar
  138. Saito, K. et al. (1987). Shokuhin Eisaigaku Zasshi 28(5): 372–7.Google Scholar
  139. Schmid, M. J. and Ottender, H. (1976). Getreide Mehl Brot 30(3): 62–4.Google Scholar
  140. Schuetze, T. (1977). Nahrung 21(5): 405–15.CrossRefGoogle Scholar
  141. Schuyl, P. J. W. and van Platerink, C. J. (1994). Analysis of Sucrose Polyesters with Electrospray Mass Spectrometry. 42nd ASMS Conference on Mass Spectrometry, Chicago, IL.Google Scholar
  142. Senelt, S. et al. (1986). Turk Hij. Deney. Biyol. Derg. 43(1): 23–35.Google Scholar
  143. Sheeley, D. M. et al. (1986). Spectroscopy 1(2): 38–9.Google Scholar
  144. Shmidt, A. A. et al. (1976). Khimicheskava Promyshlennost 8: 598–600.Google Scholar
  145. Shmidt, A. A. et al. (1979) Lebensmittelindustrie 26(4): 172–173.Google Scholar
  146. Sotirhos, N. et al. (1986). Dev. Food Sci. 12: 601–8.Google Scholar
  147. Tajano, S. and Kondoh, Y. (1987). J. Am. Oil Chem. Soc. 64(7): 1001–3.CrossRefGoogle Scholar
  148. Takagi, T. and Itabashi, Y. (1986). Yukagaku 35(9): 747–50.Google Scholar
  149. Takagi, T. and Ando, Y. (1994). J. Am. Oil Chem. Soc. 71(4): 459–60.CrossRefGoogle Scholar
  150. Tanaka, M. et al. (1979). Yukagaku 28(2): 96–9.Google Scholar
  151. Tonogau, Y. et al. (1987). Shokuhin Eisaigaku Zasshi 28(6): 427–35.Google Scholar
  152. Trautler, H. and Nikiforov, A. (1984). Anal. Chem. Symp. Ser. 21: 299–304.Google Scholar
  153. Tsuda, T. et al. (1984). J. Assoc. Off. Anal. Chem. 67(6): 1149–51.Google Scholar
  154. Tumanaka, K. and Fujita, N. (1990). Yukagaku 19(6): 393–7.Google Scholar
  155. Uematsu, Y. et al. (2001). J. AOAC Int. 84(2): 498–506.Google Scholar
  156. Vyncke, W. and Lagrou, F. (1973). Meded. Fac. Landbouwwetensch 38(3): 235–52.Google Scholar
  157. Watanabe, M. et al. (1986). Yakagaku 35(12): 1018–24.Google Scholar
  158. Wood, E. et al. (2004). Analytical Methods for Food Additives. Boca Raton, CRC Press.Google Scholar
  159. Wyrziger, J. (1968). Ber. Getreidechem. Tag Detmold. 45–57.Google Scholar
  160. Yamanaka, S. and Kudo, K. (1991). CA 115:123048. Japan 03107765.Google Scholar
  161. Yusupoca, I. et al. (1976). Khim. Prom-St. 598–600, CA 88:35919.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Gerard L. Hasenhuettl
    • 1
  1. 1.Port Saint LucieUSA

Personalised recommendations