Skip to main content

Guidelines for Processing Emulsion-Based Foods

  • Chapter
Food Emulsifiers and Their Applications

Emulsions are dispersions of one liquid into the second immiscible liquid in the form of fine droplets. Emulsions can be classified as either oil-in-water or water-inoil emulsions depending on whether oil or water is the dispersed phase. Milk, cream and sauces are some examples of oil-in-water emulsions whereas butter and margarine are examples of water-in-oil emulsions. Ice cream and fabricated meat products are complex oil-in-water emulsions in which either additional solid particles are present or the continuous phase is semi-solid or a gel. Some examples of emulsions is shown in Table 13.1. Formation of emulsion results in a large interfacial area between two immiscible phases and therefore is usually associated with an increase in free energy. Consequently, emulsions are thermodynamically unstable, i.e., they will phase separate eventually. However, emulsifiers and proteins are usually employed in the formulation. They adsorb at the liquid-liquid interface thus lowering the interfacial tension. Smaller interfacial tension helps in the dispersion of one phase in the form of fine droplets by lowering the required interfacial energy. In addition, the emulsifiers and proteins also modify the interdroplet forces thereby either preventing or retarding the rate of coalescence of colliding droplets during emulsion formation. Formulation therefore influences the size of emulsion drops formed using different types of emulsification equipment. Modification of interdroplet forces also helps in prolonging shelf life (kinetic stability) by slowing the rate of coarsening of emulsion drop size due to coalescence during storage. Proteins and emulsifiers also help in the extension of shelf life by providing rheological properties to the liquid-liquid interface. The main focus of this chapter is formation of emulsion. The chapter attempts to highlight the salient features of formation of emulsions and a brief description of different factors that control the drop size. Different types of emulsification equipment, the nature of flow field, breakup and coalescence of droplets and prediction of drop size during emulsion formation are discussed. No attempt has been made to discuss the mechanisms of destabilization of emulsion products during storage. Comprehensive treatments of this subject can be found elsewhere (Narsimhan, 1992; Robins and Hibberd, 1998; McClements, 1999; Becher, 2001).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersen, J. A. C. and P. N. Williams (1965). Margarine. London, Pergamon Press.

    Google Scholar 

  • Atkinson, P. J., E. Dickinson, et al. (1995). “Neutron reflectivity of adsorbed beta-casein and beta-lactoglobulin at the air/water interface.” J. Chem. Soc. Faraday Trans. 91: 2847–2854.

    Article  CAS  Google Scholar 

  • Barthes-Biesel, D. and A. Acrivos (1973). “Deformation and burst of a liquid droplet freely suspended in a linear shear field.” J. Fluid Mech. 61: 1–21.

    Article  Google Scholar 

  • Bartok, W. and S. G. Mason (1957). “Particle motions in sheared suspensions. V. Rigid rods and collision doublets of spheres.” J. Colloid Interface Sci. 12: 243–262.

    CAS  Google Scholar 

  • Becher, P. (1985). Eneyclopedia of Emulsion Technology, Vol. 2, Marcel Dekker, New York.

    Google Scholar 

  • Becher, P. (2001). Emulsion applications. Emulsions: Theory and Practice,_ Washington DC, Oxford University Press: 429–459.

    Google Scholar 

  • Bergenstahl, G. (1997). Physicochemical aspects of emulsifier functionality. Food emulsifier and their applications (Eds. G. L. Hasenhuetti and R. W. Hartel). New York, Chapman and Hall.

    Google Scholar 

  • Borwanker, R. P. and G. S. Buliga (1990). Food Emulsions and Foams: Theory and Practice. AICHE Symposium Series.

    Google Scholar 

  • Bos, M. A. and T. V. Vliet (2001). “Interfacial rheological properties of adsorbed protein layers and surfactants: A review.” Adv. Colloid Interface Sci. 91: 437–471.

    Article  CAS  Google Scholar 

  • Brennen, J. G., J. R. Butters, et al. (1990). Food Engineering Operations. New York, Elsevier Applied Science.

    Google Scholar 

  • Calabrese, R. V., T. P. K. Chang, et al. (1986). “Drop breakup in turbulent stirred tank contactors- Part I: effect of dispersed phase viscosity.” AIChE J. 32(4): 657–666.

    Article  CAS  Google Scholar 

  • Chan, D. Y. C., R. M. Pashley, et al. (1980). “A simple algorithm for the calculation of the electrostatic repulsion between identical charged surfaces in electrolyte.” J. Colloid Interface Sci. 77: 283.

    Article  CAS  Google Scholar 

  • Chilton, H. M. and D. R. J. Laws (1980). “Stability of aqueous emulsions of the essential oil of hops.” J. Inst. Brew. 86: 126–130.

    CAS  Google Scholar 

  • Cornec, M., D. Cho, et al. (1999). “Adsorption dynamics of a-lactalbumin and b-lactoglobulin at air-water interfaces.” J. Colloid Interface Sci. 214(2): 129–142.

    Article  CAS  Google Scholar 

  • Coulaloglou, C. A. and L. L. Tavlarides (1977). “Description of interaction processes in agitated liquid-liquid dispersions.” Chem. Eng. Sci. 32: 1289–1297.

    Article  CAS  Google Scholar 

  • Cox, R. G. (1969). “The deformation of a drop in a general time-dependent flow.” J. Fluid Mech. 37: 601–623.

    Article  Google Scholar 

  • Darling, D. F. and R. J. Birkett (1986). Food colloids in practice. Food Emulsions and Foams (Ed. E. Dickinson). London, Royal Society of Chemistry, Burlington House.

    Google Scholar 

  • Das, P. K., R. Kumar, et al. (1987). “Coalescence of drops in stirred dispersion. A white noise model for coalescence.” Chem. Eng. Sci. 42(2): 213–220.

    Article  CAS  Google Scholar 

  • Davies, H. T. (1994). “Factors determining emulsion type: Hydrophile–lipophile balance and beyond.” Colloids and Surfaces A: Physicochemical and Engineering Aspects 91: 9–24.

    Article  Google Scholar 

  • Davies, J. T. (1957). Gas/liquid and liquid/liquid interface. Proceedings of International Congress on Surface Activity, London, Butterworth.

    Google Scholar 

  • Dickinson, E. (1992). An Introduction to Food Colloids. New York, Oxford University Press.

    Google Scholar 

  • Dickinson, E. (2001). “Milk protein interfacial layers and the relationship to emulsion stability and rheology.” Colloids Surf. B Biointerfaces 20(3): 197–210.

    Article  CAS  Google Scholar 

  • Dickinson, E. and S. T. Hong (1995). “Influence of water-soluble nonionic emulsifier on the rheology of heat-set protein-stabilized emulsion gels.” J. Agric. Food Chem. 43: 2560–2566.

    Article  CAS  Google Scholar 

  • Dickinson, E. and Y. Matsumura (1994). “Proteins at liquid interfaces: Role of the molten globule state.” Colloids Surf. B Biointerfaces 3: 1–17.

    Article  CAS  Google Scholar 

  • Dickinson, E. and G. Stainsby (1988). Emulsion Stability. Advances in Food Emulsions and Foams (Eds. E. Dickinson and G. Stainsby). London, Elsevier Applied Sciences.

    Google Scholar 

  • Djabbarah, N. F. and D. T. Wasan (1982). “Dilational viscoelastic properties of fluid interfaces–III Mixed surfactant systems.” Chem. Eng. Sci. 37(2): 175–184.

    Article  CAS  Google Scholar 

  • Doullard, R. and J. Lefebvre (1990). “Adsorption of proteins at the gas-liquid interface: Models for concentration and pressure isotherms.” J. Colloid Interface Sci. 139(2): 488–499.

    Article  Google Scholar 

  • Feijter, J. A. de. and J. Bejemins (1982). “Soft-particle model of compact macromolecules at interfaces.” J. Colloid Interface Sci. 90(1): 289–292.

    Article  Google Scholar 

  • Fisher, L. R. and Parker, N. S. (1988). In Advances in food emulsions and foams (eds. E. Dickinson and G. Stainsby), p. 53. Elsevier Applied Science, London.

    Google Scholar 

  • Flumerfelt, R. W. (1972). “Drop breakup in simple shear fields of viscoelastic fluids.” Ind. Eng. Chem., Fund. 11: 312.

    Article  CAS  Google Scholar 

  • Frisch, H. L. and Simha, R. (1956), J. Chem. Phys.,24, 652.

    Article  CAS  Google Scholar 

  • Gopal, E. S. R. (1968). Principles of emulsion formation. Emulsion Science. P. Sherman. London, Academic Press.

    Google Scholar 

  • Griffin, W. C. (1949). “Classification of surface-active agents by ‘HLB’.” J. Soc. Cosmet. Chem. 1: 311.

    Google Scholar 

  • Hiemenz, P. C. and R. Rajagopalan (1997). The Electrical double layer and double-layer interactions. Principles of Colloid and Surface Chemistry. New York, Marcel Dekker: 499–533.

    Google Scholar 

  • Hinze, J. O. (1955). “Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes.” AIChE J. 1(3): 289–295.

    Article  CAS  Google Scholar 

  • Kandori, K. (1995). Applications of microporous glass membranes: Membrane emulsification. Food Processing: Recent Developments (Ed. A. G. Gaonkar). Amsterdam, Elsevier: 113–142.

    Google Scholar 

  • Karam, H. J. and J. C. Bellinger (1968). “Deformation and breakup of liquid droplets in a simple shear field.” Ind. Eng. Chem. Res. 7(4): 576–581.

    CAS  Google Scholar 

  • Kiraly, Z. and B. Vincent (1992). “The synthesis and characterization of Poly(ethylene oxide)-b-Polydimethylsiloxane diblock copolymers.” Polym. Int. 28: 139–150.

    Article  CAS  Google Scholar 

  • Kokelaar, J. J. and A. Prins (1995). “Surface rheological properties of bread dough components in relation to gas bubble stability.” J. Food Sci. 22: 53–61.

    Google Scholar 

  • Levich, V. G. (1962). Physicochemical Hydrodynamics. Englewood Cliffs, N. J., Prentice Hall.

    Google Scholar 

  • Lobo, L. and A. Sverika (1997). A unique method to measure coalescence occurring during homogenization. Proceedings of Second World Conference on Emulsions.

    Google Scholar 

  • McCarthy, W. W. (1964). “Ultrasonic emulsifcation” Drug Cosmet. Ind. 94(6): 821–824.

    CAS  Google Scholar 

  • McClements, D. J. (1999). Food Emulsions: Principles, Practice and Techniques. Boca Raton, FL, CRC Press.

    Google Scholar 

  • Mohan, S. and G. Narsimhan (1997). “Coalescence of protein-stabilized emulsions in a high pressure homogenizer.” J. Colloid Interface Sci. 192: 1–15.

    Article  CAS  Google Scholar 

  • Muralidhar, R. and D. Ramkrishna (1986). “Analysis of droplet coalescence in turbulent liquid-liquid dispersions.” I&EC Fundamentals 25: 554–560.

    Article  CAS  Google Scholar 

  • Muralidhar, R., D. Ramkrishna, et al. (1988). “Coalescence of rigid droplets in a stirred dispersion- II. Band-limited force fluctuations.” Chem. Eng. Sci. 43: 1559–1568.

    Article  CAS  Google Scholar 

  • Murray, B. S. and E. Dickinson (1996). “Interfacial rheology and the dynamic properties of adsorbed films of food proteins and surfactants.” Food Sci. Technol. Int. 2: 131–145.

    Article  CAS  Google Scholar 

  • Narsimhan, G. (1992). Emulsions. Physical Chemistry of Foods (Eds. H. G. Schwartzberg and R. W. Hartel). Marcel Dekker, New York.

    Google Scholar 

  • Narsimhan, G. (2004). “Model for drop coalescence in a locally isotropic turbulent flow field.” J. Colloid Interface Sci. 272: 197–209.

    Article  CAS  Google Scholar 

  • Narsimhan, G. and P. Goel (2001). “Drop coalescence during emulsion formation in a high pressure homogenizer for tetradecane-in-water emulsion stabilized by sodium dodocyl sulphate.” J. Colloid Interface Sci. 238: 420–432.

    Article  CAS  Google Scholar 

  • Narsimhan, G., J. P. Gupta, et al. (1979). “Model for transitional breakage probability of droplets in agitated lean liquid-liquid dispersions.” Chem. Eng. Sci. 34(2): 257–265.

    Article  CAS  Google Scholar 

  • Narsimhan, G., G. Neijfelt, et al. (1984). “Breakage functions of droplets in agitated liquid-liquid dispersions.” AIChE J. 30(3): 457–467.

    Article  CAS  Google Scholar 

  • Narsimhan, G., D. Ramkrishna, et al. (1980). “Analysis of drop size distributions in lean liquid-liquid dispersions.” AIChE J. 26(6): 991–1000.

    Article  CAS  Google Scholar 

  • Narsimhan, G. and Z. Wang (2005). “Stability of thin stagnant film on a solid surface with a viscoelastic air-liquid interface.” J. Colloid Interface Sci. 291(1): 296–302.

    Article  CAS  Google Scholar 

  • Phipps, L. W. (1985). The High Pressure Dairy Homogenizer. Reading, England, The National Institute for Research in Dairy.

    Google Scholar 

  • Robins, M. M. and D. J. Hibberd (1998). Emulsion flocculation and creaming. Modern Aspects of Emulsion Science (Ed. B. P. Binks). The Royal Society of Chemistry.

    Google Scholar 

  • Rumscheidt, F. D. and S. G. Mason (1961a). “Particle motions in sheared suspensions. XI. internal circulation in fluid droplets (experimental).” J. Colloid Interface Sci. 16: 210–237.

    CAS  Google Scholar 

  • Rumscheidt, F. D. and S. G. Mason (1961b). “Particle motions in sheared supensions XII. Deformation and burst of fluid drops in shear and hyperbolic flow.” J. Colloid Interface Sci. 16: 238–261.

    CAS  Google Scholar 

  • Sathyagal, A. N., D. Ramkrishna, et al. (1996). “Droplet breakage in stirred dispersions. Breakage functions from experimental drop size distributions.” Chem. Eng. Sci. 51(9): 1377–1391.

    Article  CAS  Google Scholar 

  • Singer, S. J. (1948), J. Chem. Phys., 16: 812.

    Article  Google Scholar 

  • Swaisgood, H. E. (1996). Characteristics of Milk. Food Chemistry (Ed. O. R. Fennema). New York, Marcel Dekker, Inc: 841–878.

    Google Scholar 

  • Taylor, G. I. (1932). “The viscosity of a fluid containing small drops of another fluid.” Proc. Roy. Soc. (London) A138: 41–48.

    Google Scholar 

  • Taylor, G. I. (1934). “The formation of emulsions in definable fields of flow.” Proc. Roy. Soc. (London) A146: 501–526.

    Google Scholar 

  • Torza, S., R. G. Cox, et al. (1972). “Particle motions in sheared suspensions. XXVII. Transient and steady deformation and burst of liquid drops.” J. Colloid Interface Sci. 38(2): 395–411.

    Article  CAS  Google Scholar 

  • Tsaine, L., P. Walstra, et al. (1996). “Transfer of oil between emulsion droplets.” J. Colloid Interface Sci. 184: 378–390.

    Article  Google Scholar 

  • Uraizee, F. and G. Narsimhan (1991). “A surface equation of state for globular proteins at the air-water interface.” J. Colloid Interface Sci. 146(1): 169–178.

    Article  CAS  Google Scholar 

  • Walstra, P. (1983). Formation of emulsions. Encyclopedia of Emulsion Technology (Ed. P. Becher). New York, Marcel Dekker: 1.

    Google Scholar 

  • Walstra, P. and P. E. A. Smulders (1998). Emulsion formation. Modern aspects of emulsion science (Ed. B. P. Binks). The Royal Society of Chemistry: 56–99.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Narsimhan, G., Wang, Z. (2008). Guidelines for Processing Emulsion-Based Foods. In: Hasenhuettl, G.L., Hartel, R.W. (eds) Food Emulsifiers and Their Applications. Springer, New York, NY. https://doi.org/10.1007/978-0-387-75284-6_13

Download citation

Publish with us

Policies and ethics