Skip to main content

Spinal Microglia in Neuropathic Pain Plasticity

  • Chapter
Molecular Pain
  • 1052 Accesses

Abstract

Neuropathic pain affects a growing number of people worldwide, arising from a diversity of causes including traumatic nerve injury, neurotoxic chemicals or diseases that affect peripheral nerves, such as diabetes, HIV/AIDS and cancer. Despite these varying causes, it is clear that a principal cause of neuropathic pain is pathological alterations in the balance of excitation and inhibition in dorsal horn of the spinal cord resulting in hyperexcitability and enhanced activity in central nociceptive networks. It is the neuropathology that must be targeted for effective therapy of which there is none presently available. The focus of understanding of neuropathic pain mechanisms has been on neuronal processes that produce lasting enhancement of excitation or suppression of inhibition. There is, however, growing evidence that critical cellular processes are not restricted to neurons in the dorsal horn. Rather recent findings demonstrate involvement of glia, and of glia-neuronal signaling, in initiating and sustaining enhancement of nociceptive transmission. In particular, a role has emerged for microglia in pain hypersensitivity following nerve injury. Thus, an expanded understanding of cellular and molecular signalling mechanisms in the dorsal horn that will provide a basis of creating new types of strategies for management, and also for diagnosis, of neuropathic pain needs to include both neurons and glia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

General Citations

  • Carson MJ, Thrash JC, Lo D. 2004. Analysis of microglial gene expression: identifying targets for CNS neurodegenerative and autoimmune disease. Am J Pharmacogenomics, 4:321–330.

    Article  PubMed  CAS  Google Scholar 

  • Ji RR, Strichartz G. 2004. Cell signaling and the genesis of neuropathic pain. Sci STKE, 2004: reE14.

    Google Scholar 

  • Marchand F, Perretti M, McMahon SB. 2005. Role of the immune system in chronic pain. Nat Rev Neurosci, 6: 521–532.

    Article  PubMed  CAS  Google Scholar 

  • Salter MW. 2005. Cellular signalling pathways of spinal pain neuroplasticity as targets for analgesic development. Curr Top Med Chem, 5:557–567.

    Article  PubMed  CAS  Google Scholar 

  • Stoll G, Jander S. 1999. The role of microglia and macrophages in the pathophysiology of the CNS. Prog Neurobiol, 58: 233–247.

    Article  PubMed  CAS  Google Scholar 

  • Streit WJ, Walter SA, Pennell NA. 1999. Reactive microgliosis. Prog Neurobiol, 57:563–581.

    Article  PubMed  CAS  Google Scholar 

  • Tsuda M, Inoue K, Salter MW. 2005. Neuropathic pain and spinal microglia: a big problem from molecules in “small” glia. Trends Neurosci, 28: 101–107.

    Article  PubMed  CAS  Google Scholar 

  • Watkins LR, Milligan ED, Maier SF. 2001. Glial activation: a driving force for pathological pain. Trends Neurosci, 24: 450–455.

    Article  PubMed  CAS  Google Scholar 

  • Woolf CJ, Salter MW. 2006. State dependent plasticity. In: The Textbook of Pain, 5th ed. Koltzenburg M and McMahon SB, eds. 91–106.

    Google Scholar 

Discovery Citations

  • Abbadie C, Lindia JA, Cumiskey AM, Peterson LB, Mudgett JS, Bayne EK, DeMartino JA, Maclntyre DE, Forrest MJ. 2003. Impaired neuropathic pain responses in mice lacking the chemokine receptor CCR2. Proc Natl Acad Sci USA, 100: 7947–7952.

    Article  PubMed  CAS  Google Scholar 

  • Colburn RW, DeLeo JA, Rickman AJ, Yeager MP, Kwon P, Hickey WE 1997. Dissociation of microglial activation and neuropathic pain behaviors following peripheral nerve injury in the rat. J Neuroimmunol, 79: 163–175.

    Article  PubMed  CAS  Google Scholar 

  • Coull JA, Boudreau D, Bachand K, Prescott SA, Nault F, Sik A, De Koninck P, De Koninck Y. 2003. Trans-synaptic shift in anion gradient in spinal lamina I neurons as a mechanism of neuropathic pain. Nature, 424:938–942.

    Article  PubMed  CAS  Google Scholar 

  • Cova JL, Aldskogius H, Arvidsson J, Molander C. 1988. Changes in microglial cell numbers in the spinal cord dorsal horn following brachial plexus transection in the adult rat. Exp Brain Res, 73: 61–68.

    Article  PubMed  CAS  Google Scholar 

  • Coyle DE. 1998. Partial peripheral nerve injury leads to activation of astroglia and microglia which parallels the development of allodynic behavior. Glia, 23: 75–83.

    Article  PubMed  CAS  Google Scholar 

  • Ehlers MR. 2000. CR3: a general purpose adhesion-recognition receptor essential for innate immunity. Microbes Infect, 2: 289–294.

    Article  PubMed  CAS  Google Scholar 

  • Eriksson NP, Persson JK, Svensson M, Arvidsson J, Molander C, Aldskogius H. 1993. A quantitative analysis of the microglial cell reaction in central primary sensory projection territories following peripheral nerve injury in the adult rat. Exp Brain Res, 96: 19–27.

    PubMed  CAS  Google Scholar 

  • Jin SX, Zhuang ZY, Woolf CJ, Ji RR. 2003. p38 mitogen-activated protein kinase is activated after a spinal nerve ligation in spinal cord microglia and dorsal root ganglion neurons and contributes to the generation of neuropathic pain. J Neurosci, 23: 4 017–4 022.

    CAS  Google Scholar 

  • Ledeboer A, Sloane EM, Milligan ED, Frank MG, Mahony JH, Maier SF, Watkins LR. 2005. Minocycline attenuates mechanical allodynia and proinflammatory cytokine expression in rat models of pain facilitation. Pain, 115: 71–83.

    Article  PubMed  CAS  Google Scholar 

  • Lindia JA, McGowan E, Jochnowitz N, Abbadie C. 2005. Induction of CX3CL1 expression in astrocytes and CX3CR1 in microglia in the spinal cord of a rat model of neuropathic pain. J Pain, 6: 434–438.

    Article  PubMed  CAS  Google Scholar 

  • Ling EA. 1979. Evidence for a haematogenous origin of some of the macrophages appearing in the spinal cord of the rat after dorsal rhizotomy. J Anat, 128: 143–154.

    PubMed  CAS  Google Scholar 

  • Liu L, Tornqvist E, Mattsson P, Eriksson NP, Persson JK, Morgan BP, Aldskogius H, Svensson M. 1995. Complement and clusterin in the spinal cord dorsal horn and gracile nucleus following sciatic nerve injury in the adult rat. Neuroscience, 68: 167–179.

    Article  PubMed  CAS  Google Scholar 

  • Milligan ED, Zapata V, Chacur M, Schoeniger D, Biedenkapp J, O’Connor KA, Verge GM, Chapman G, Green P, Foster AC, Naeve GS, Maier SF, Watkins LR. 2004. Evidence that exogenous and endogenous fractalkine can induce spinal nociceptive facilitation in rats. Eur J Neurosci, 20: 2 294–2 302.

    Article  CAS  Google Scholar 

  • Raghavendra V, Tanga F, DeLeo JA. 2003. Inhibition of microglial activation attenuates the development but not existing hypersensitivity in a rat model of neuropathy. J Pharmacol Exp Ther, 306: 624–630.

    Article  PubMed  CAS  Google Scholar 

  • Sweitzer SM, Colburn RW, Rutkowski M, DeLeo JA. 1999. Acute peripheral inflammation induces moderate glial activation and spinal IL-lbeta expression that correlates with pain behavior in the rat. Brain Res, 829: 209–221.

    Article  PubMed  CAS  Google Scholar 

  • Sweitzer SM, White KA, Dutta C, DeLeo JA. 2002. The differential role of spinal MHC class II and cellular adhesion molecules in peripheral inflammatory versus neuropathic pain in rodents. J Neuroimmunol, 125: 82–93.

    Article  PubMed  CAS  Google Scholar 

  • Tanga FY, Nutile-McMenemy N, DeLeo JA. 2005. The CNS role of Toll-like receptor 4 in innate neuroimmunity and painful neuropathy. Proc Natl Acad Sci USA, 102: 5 856–5 861.

    Article  CAS  Google Scholar 

  • Tanga FY, Raghavendra V, DeLeo JA. 2004. Quantitative real-time RT-PCR assessment of spinal microglial and astrocytic activation markers in a rat model of neuropathic pain. Neurochem Int, 45: 397–407.

    Article  PubMed  CAS  Google Scholar 

  • Tsuda M, Mizokoshi A, Shigemoto-Mogami Y, Koizumi S, Inoue K. 2004. Activation of p38 mitogen-activated protein kinase in spinal hyperactive microglia contributes to pain hypersensitivity following peripheral nerve injury. Glia, 45: 89–95.

    Article  PubMed  Google Scholar 

  • Tsuda M, Shigemoto-Mogami Y, Koizumi S, Mizokoshi A, Kohsaka S, Salter MW, Inoue K. 2003. P2X4 receptors induced in spinal microglia gate tactile allodynia after nerve injury. Nature, 424: 778–783.

    Article  PubMed  CAS  Google Scholar 

  • Twining CM, Sloane EM, Schoeniger DK, Milligan ED, Martin D, Marsh H, Maier SF, Watkins LR. 2005. Activation of the spinal cord complement cascade might contribute to mechanical allodynia induced by three animal models of spinal sensitization. J Pain, 6: 174–183.

    Article  PubMed  Google Scholar 

  • Zhang J, Hoffert C, Vu HK, Groblewski T, Ahmad S, O’Donnell D. 2003. Induction of CB2 receptor expression in the rat spinal cord of neuropathic but not inflammatory chronic pain models. Eur J Neurosci, 17: 2 750–2 754.

    Article  Google Scholar 

  • Zhuang ZY, Gerner P, Woolf CJ, Ji RR. 2005. ERK is sequentially activated in neurons, microglia, and astrocytes by spinal nerve ligation and contributes to mechanical allodynia in this neuropathic pain model. Pain, 114: 149–159.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Higher Education Press

About this chapter

Cite this chapter

Salter, M.W. (2007). Spinal Microglia in Neuropathic Pain Plasticity. In: Zhuo, M. (eds) Molecular Pain. Springer, New York, NY. https://doi.org/10.1007/978-0-387-75269-3_24

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-75269-3_24

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-75268-6

  • Online ISBN: 978-0-387-75269-3

Publish with us

Policies and ethics