Skip to main content

Retrograde Messengers

  • Chapter
  • 1050 Accesses

Abstract

In the neuronal circuit, feedback control is an important mechanism to maintain the stability of the circuit. Among many different signaling molecules, diffusible, gaseous messengers such as nitric oxide (NO) and carbon monoxide (CO) serve as key retrograde messengers in central excitatory synapses. Due to its rapid synthesis and non-vesicle dependent release, these gaseous messengers play different roles in synaptic transmission, in particular the plasticity. In this chapter, we will use NO and CO as two major examples of retrograde messenger families to explore their roles in central plasticity. We will discuss the synthesis of NO and CO, molecular target and downstream signaling proteins for NO and CO. Finally, we will also review the physiological functions of NO and CO in learning & memory, sensory transmission and pain, and cortical functions.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

General Citations

  • Alger BE. 2002. Retrograde signaling in the regulation of synaptic transmission: focus on endocannabinoids. Prog Neurobiol, 68:247–286.

    Article  PubMed  CAS  Google Scholar 

  • Baranano DE, Snyder SH. 2001. Neural roles for heme oxygenase: contrasts to nitric oxide synthase. Proc Natl Acad Sci USA, 98:10996–11002.

    Article  PubMed  CAS  Google Scholar 

  • Boehning D, Snyder SH. 2003. Novel neural modulators. Annu Rev Neurosci, 26:105–131.

    Article  PubMed  CAS  Google Scholar 

  • Bredt DS, Snyder SH. 1994. Nitric oxide: a physiologic messenger molecule. Annu Rev Biochem, 63: 175–195.

    Article  PubMed  CAS  Google Scholar 

  • Hawkins RD, Zhuo M, Arancio O. 1994. Nitric oxide and carbon monoxide as possible retrograde messengers in hippocampal long-term potentiation. J Neurobiol, 25:652–665.

    Article  PubMed  CAS  Google Scholar 

  • Schuman EM, Madison DV. 1994. Nitric oxide and synaptic function. Annu Rev Neurosci, 17:153–183.

    Article  PubMed  CAS  Google Scholar 

  • Tao HW, Poo M. 2001. Retrograde signaling at central synapses. Proc Natl Acad Sci USA, 98:11009–11015.

    Article  PubMed  CAS  Google Scholar 

Discovery Citations

  • Arancio O, Kandel ER, Hawkins RD. 1995. Activity-dependent long-term enhancement of transmitter release by presynaptic 3′,5′-cyclic GMP in cultured hippocampal neurons. Nature, 376:74–80.

    Article  PubMed  CAS  Google Scholar 

  • Blackshaw S, Eliasson MJ, Sawa A, Watkins CC, Krug D, Gupta A, et al. 2003. Species, strain and developmental variations in hippocampal neuronal and endothelial nitric oxide synthase clarify discrepancies in nitric oxide-dependent synaptic plasticity. Neuroscience, 119:979–990.

    Article  PubMed  CAS  Google Scholar 

  • Boehning D, Sedaghat L, Sedlak TW, Snyder SH. 2004. Heme oxygenase-2 is activated by calcium-calmodulin. J Biol Chem, 279:30927–30930.

    Article  PubMed  CAS  Google Scholar 

  • Boehning D, Moon C, Sharma S, Hurt KJ, Hester LD, Ronnett GV, et al. 2003. Carbon monoxide neurotransmission activated by CK2 phosphorylation of heme oxygenase-2. Neuron, 40:129–137.

    Article  PubMed  CAS  Google Scholar 

  • Bredt DS, Hwang PM, Snyder SH. 1990. Localization of nitric oxide synthase indicating a neural role for nitric oxide. Nature, 347:768–770.

    Article  PubMed  CAS  Google Scholar 

  • Bredt DS, Glatt CE, Hwang PM, Fotuhi M, Dawson TM, Snyder SH. 1991. Nitric oxide synthase protein and mRNA are discretely localized in neuronal populations of the mammalian CNS together with NADPH diaphorase. Neuron, 7:615–624.

    Article  PubMed  CAS  Google Scholar 

  • Chien WL, Liang KC, Teng CM, Kuo SC, Lee FY, Fu WM. 2003. Enhancement of long-term potentiation by a potent nitric oxide-guanylyl cyclase activator, 3-(5-hydroxymethyl-2-furyl)-l-benzyl-indazole. Mol Pharmacol, 63:1322–1328.

    Article  PubMed  CAS  Google Scholar 

  • Cummings JA, Nicola SM, Malenka RC. 1994. Induction in the rat hippocampus of long-term potentiation (LTP) and long-term depression (LTD) in the presence of a nitric oxide synthase inhibitor. Neurosci Lett, 176:110–114.

    Article  PubMed  CAS  Google Scholar 

  • Dinerman JL, Dawson TM, Schell MJ, Snowman A, Snyder SH. 1994. Endothelial nitric oxide synthase localized to hippocampal pyramidal cells: implications for synaptic plasticity. Proc Natl Acad Sci USA, 91:4214–4218.

    Article  PubMed  CAS  Google Scholar 

  • Frisch C, Dere E, Silva MA, Godecke A, Schrader J, Huston JP. 2000. Superior water maze performance and increase in fear-related behavior in the endothelial nitric oxide synthase-deficient mouse together with monoamine changes in cerebellum and ventral striatum. J Neurosci, 20:6694–6700.

    PubMed  CAS  Google Scholar 

  • Gelperin A. 1994. Nitric oxide mediates network oscillations of olfactory inferneurons in a terrestrial mollusc. Nature, 369:61–63.

    Article  PubMed  CAS  Google Scholar 

  • Ingi T, Chiang G, Ronnett GV. 1996. The regulation of heme turnover and carbon monoxide biosynthesis in cultured primary rat olfactory receptor neurons. J Neurosci, 16:5621–5628.

    PubMed  CAS  Google Scholar 

  • Ingi T, Cheng J, Ronnett GV. 1996. Carbon monoxide: an endogenous modulator of the nitric oxide-cyclic GMP signaling system. Neuron, 16:835–842.

    Article  PubMed  CAS  Google Scholar 

  • Keefer EW, Gramowski A, Gross GW. 2001. NMD A receptor-dependent periodic oscillations in cultured spinal cord networks. J Neurophysiol, 86: 3030–3042.

    PubMed  CAS  Google Scholar 

  • Kleppisch T, Wolfsgruber W, Feil S, Allmann R, Wotjak CT, Goebbels S, et al. 2003. Hippocampal cGMP-dependent protein kinase I supports an age-and protein synthesis-dependent component of long-term potentiation but is not essential for spatial reference and contextual memory. J Neurosci, 23:6005–6012.

    PubMed  CAS  Google Scholar 

  • Klyachko VA, Ahern GP, Jackson MB. 2001. cGMP-mediated facilitation in nerve terminals by enhancement of the spike afterhyperpolarization. Neuron, 31:1015–1025.

    Article  PubMed  CAS  Google Scholar 

  • Knowles RG, Palacios M, Palmer RM, Moncada S. 1989. Formation of nitric oxide from L-arginine in the central nervous system: a transduction mechanism for stimulation of the soluble guanylate cyclase. Proc Natl Acad Sci USA, 86:5159–5162.

    Article  PubMed  CAS  Google Scholar 

  • Meffert MK, Premack BA, Schulman H. 1994. Nitric oxide stimulates Ca(2+)-independent synaptic vesicle release. Neuron, 12:1235–1244.

    Article  PubMed  CAS  Google Scholar 

  • Meffert MK, Calakos NC, Scheller RH, Schulman H. 1996. Nitric oxide modulates synaptic vesicle docking fusion reactions. Neuron, 16:1229–1236.

    Article  PubMed  CAS  Google Scholar 

  • Michel T, Li GK, Busconi L. 1993. Phosphorylation and subcellular translocation of endothelial nitric oxide synthase. Proc Natl Acad Sci USA, 90: 6252–6256.

    Article  PubMed  CAS  Google Scholar 

  • Nathanson JA, Scavone C, Scanlon C, McKee M. 1995. The cellular Na+ pump as a site of action for carbon monoxide and glutamate: a mechanism for long-term modulation of cellular activity. Neuron, 14:781–794.

    Article  PubMed  CAS  Google Scholar 

  • Pape HC, Mager R. 1992. Nitric oxide controls oscillatory activity in thalamocortical neurons. Neuron, 9:441–448.

    Article  PubMed  CAS  Google Scholar 

  • Poss KD, Thomas MJ, Ebralidze AK, O’Dell TJ, Tonegawa S. 1995. Hippocampal long-term potentiation is normal in heme oxygenase-2 mutant mice. Neuron, 15:867–873.

    Article  PubMed  CAS  Google Scholar 

  • Savchenko A, Barnes S, Kramer RH. 1997. Cyclic-nucleotide-gated channels mediate synaptic feedback by nitric oxide. Nature, 390:694–698.

    PubMed  CAS  Google Scholar 

  • Smith SL, Otis TS. 2003. Persistent changes in spontaneous firing of Purkinje neurons triggered by the nitric oxide signaling cascade. J Neurosci, 23: 367–372.

    PubMed  CAS  Google Scholar 

  • Wang HG, Lu FM, Jin I, Udo H, Kandel ER, de Vente J, et al. 2005. Presynaptic and postsynaptic roles of NO, cGK, and RhoA in long-lasting potentiation and aggregation of synaptic proteins. Neuron, 45:389–403.

    Article  PubMed  CAS  Google Scholar 

  • Williams SE, Wootton P, Mason HS, Bould J, Iles DE, Riccardi D, et al. 2004. Hemoxygenase-2 is an oxygen sensor for a calcium-sensitive potassium channel. Science, 306: 2093–2097.

    Article  PubMed  CAS  Google Scholar 

  • Yuen PS, Doolittle LK, Garbers DL. 1994. Dominant negative mutants of nitric oxide-sensitive guanylyl cyclase. J Biol Chem, 269:791–793.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Higher Education Press

About this chapter

Cite this chapter

Zhuo, M. (2007). Retrograde Messengers. In: Zhuo, M. (eds) Molecular Pain. Springer, New York, NY. https://doi.org/10.1007/978-0-387-75269-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-75269-3_12

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-75268-6

  • Online ISBN: 978-0-387-75269-3

Publish with us

Policies and ethics