On Global in Time Properties of the Symmetric Compressible Barotropic Navier–Stokes–Poisson Flows in a Vacuum

  • Alexander Zlotnik
Part of the International Mathematical Series book series (IMAT, volume 7)


Free Boundary Hard Core Free Boundary Problem Weakly Star Poisson Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. A. Amosov and A. A. Zlotnik, Global solvability of a class of quasilinear systems of composite type with nonsmooth data, Differ. Equ. 30(1994), 545-558.MathSciNetGoogle Scholar
  2. 2.
    A. A. Amosov and A. A. Zlotnik, Semidiscrete method for solving the equations of a one-dimensional motion of a viscous heat-conducting gas with nonsmooth data. Regularity of solutions,Russian Math. 43(1999), no. 5, 10-23.MathSciNetGoogle Scholar
  3. 3.
    J. Berg and J. Lofstrom, Interpolation Spaces. An Introduction, Springer, Berlin, 1975.Google Scholar
  4. 4.
    P. Billingsley, Convergence of Probability Measures, John Wiley and Sons, New York, 1968.MATHGoogle Scholar
  5. 5.
    S. Chandrasekhar, An Introduction to the Study of Stellar Structures, Dover, New York, 1967.Google Scholar
  6. 6.
    P. H. Chavanis, Gravitational stability of isothermal and polytropic spheres, Astronom. Astrophys. 401(2003), 15-42.MATHCrossRefGoogle Scholar
  7. 7.
    H.-Y. Chin, Stellar Physics.Vol. I. Blaisdell, Waltham, 1968.Google Scholar
  8. 8.
    B. Ducomet, Hydrodynamical models of gaseous stars, Rev.Math. Phys. 8(1996), 957-1000.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    B. Ducomet and A. Zlotnik, Viscous compressible barotropic symmetric flows with free boundary under general mass force. Part I: Uniform-intime bounds and stabilization,Math. Methods Appl. Sci. 28(2005), 827-863.MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    H. Fujita-Yashima and N. Ablaoui-Lahmar, Sur l’expansion d’un gaz visqueux et calorif‘ere avec la surface libre en une dimension et ‘a symétrie sphérique, Atti Sem. Mat. Fiz. Univ. Modena 40(2001), 1-17.MathSciNetGoogle Scholar
  11. 11.
    P. Haensel, J. L. Zdunik, and R., Phase transition in dense matter and radial pulsations of neutron stars, Astronom. Astrophys. 217(1989), 137-144.Google Scholar
  12. 12.
    P. Hartman, Ordinary Differential Equations, John Wiley and Sons, New York, 1964.MATHGoogle Scholar
  13. 13.
    J. M. Heinzle and C. Uggla, Newtonian stellar models, Ann. Phys. 308(2003), 18-61.MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    J. M. Huntley and W. C. Saslaw, The distribution of stars in galactic nuclei: loaded polytropes, Astrophys. J. 199(1975), 328-335.CrossRefGoogle Scholar
  15. 15.
    W. C. Kuan and S. S. Lin, Numbers of equilibria for the equation of selfgravitating isentropic gas surrounding a solid ball, Japan J. Industrial Appl. Math. 13(1996), 311-331.MATHMathSciNetGoogle Scholar
  16. 16.
    O. A. Ladyzhenskaya, V. A. Solonnikov, and N. N. Ural’ceva, Linear and Quasilinear Equations of Parabolic Type, Am. Math. Soc., Providence, R.I., 1968.Google Scholar
  17. 17.
    S. S. Lin, Stability of gaseous stars in spherically symmetric motions, SIAM J. Math. Anal. 28(1997), 539-569.MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    J.-L. Lions, Quelques Méthodes de Résolution des Probl‘emes aux Limites Non Linéaires, Dunod, Paris, 1969.Google Scholar
  19. 19.
    R. A. Lyttleton, The Ramsey phase-change hypothesis, The Moon the Planets 19(1978), 425-442.CrossRefGoogle Scholar
  20. 20.
    S. Matuŝu-Neĉasova ˆ, M. Okada, and T. Makino, Free boundary problem for the equation of spherically symmetric motion of a viscous gas. II, Japan J. Industrial Appl. Math. 12(1995), 195-203.CrossRefGoogle Scholar
  21. 21.
    S. Matuŝu-Neĉasova ˆ, M. Okada, and T. Makino, Free boundary problem for the equation of spherically symmetric motion of a viscous gas. III, Japan J. Industrial Appl. Math. 14(1997), 199-213.Google Scholar
  22. 22.
    I. Straŝkraba and A. Zlotnik, On a decay rate for 1D-viscous compressible barotropic fluid equations, J. Evolut. Equat. 2(2002), 69-96.CrossRefMATHGoogle Scholar
  23. 23.
    I. Straŝkraba and A. Zlotnik, Global behavior of 1d-viscous compressible barotropic fluid with a free boundary and large data, J. Math. Fluid Mech. 5(2003), 119-143.MathSciNetMATHGoogle Scholar
  24. 24.
    G. Strömer and W. Zajaczkowski, On the existence and properties of the rotationally symmetric equilibrium states of compressible barotropic self-gravitating fluids, Indiana Univer. Math. J. 46(1997), 1181-1220.Google Scholar
  25. 25.
    G. Strömer and W. Zajaczkowski, Local existence of solutions of free boundary problem for the equations of compressible viscous selfgravitating fluids, Appl. Math. 26(1999), 1-31.MathSciNetGoogle Scholar
  26. 26.
    A. A. Zlotnik, Uniform estimates and stabilization of symmetric solutions of a system of quasilinear equations, Equ. 36(2000), 701-716.MATHMathSciNetGoogle Scholar
  27. 27.
    A. Zlotnik, Stress and heat .ux stabilization for viscous compressible medium equations with a nonmonotone equation of state, Appl. Math. Lett. 16(2003), 1231-1237.MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    A. A. Zlotnik and A. A. Amosov, Global generalized solutions of the equations of the one-dimensional motion of a viscous barotropic gas, Sov. Math. Dokl. 37(1988), 554-558.MATHMathSciNetGoogle Scholar
  29. 29.
    A. A. Zlotnik and B. Ducomet, Stabilization rate and stability for viscous compressible barotropic symmetric flows with a free boundary for a general mass force, Sb. Math. 196(2005), 1745-1799.CrossRefMathSciNetMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Alexander Zlotnik
    • 1
  1. 1.Russian State Social UniversityRussia

Personalised recommendations