On Problem of Stability of Equilibrium Figures of Uniformly Rotating Viscous Incompressible Liquid

  • Vsevolod Solonnikov
Part of the International Mathematical Series book series (IMAT, volume 7)


Compatibility Condition Orthogonality Condition Free Boundary Problem Rigid Motion Rigid Rotation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Appell, Figures d’équilibre d’une mass liquide homog‘ene en rotation, Paris, 1932.Google Scholar
  2. 2.
    T. Ja. Azizov, Dissipative operators in a Hilbert space with an indefinite metric Math. USSR, Izv. 7 (1973), 639-660.MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    J. T. Beale and T. Nishida, Large-time behavior of viscous surface waves, Lect. Notes Num. Appl. Anal. 8 (1985), 1-14.MathSciNetGoogle Scholar
  4. 4.
    N. D. Kopachevsky and S. G. Krein, Operator Approach to Linear Problems of Hydrodynamics, Vol 2, Birkh¨auser, 2003.Google Scholar
  5. 5.
    M. G. Krein and G. K. Langer, Defect subspaces and generalized resolvents of an Hermitian operator in the space Đê, Funct. Anal. Appl. 5 (1971), 136-146.MATHCrossRefGoogle Scholar
  6. 6.
    A. M. Lyapunov, On the stability of ellipsoidal equilibrium forms of rotating fluid [in Russian], Coll. Works. Vol 3, Moscow, 1959.Google Scholar
  7. 7.
    A. D. Myshkis, V. G. Babskii, N. D. Kopachenskii, and L. A. Slobozhanin, Low-Gravity Fluid Mechanics, Springer, 1987.Google Scholar
  8. 8.
    T. Nishida, Y. Teramoto, and H. Yoshihara, Global in time behavior of viscous surface waves: horizontally periodic motion J. Math. Kyoto Univ. (2004), 271-323.Google Scholar
  9. 9.
    M. Padula, On the exponential stability of the rest state of a viscous compressible fluid, J. Math. Fluid Mech. 1 (1999), no. 1, 62-77.MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    M. Padula and V. A. Solonnikov, On the global existence of nonsteady motions of a fluid drop and their exponential decay to a uniform rigid rotation, Quad. Mat. 10 (2002), 185-218.Google Scholar
  11. 11.
    M. Padula and V.A. Solonnikov, Existence of non-steady flows of an incompressible viscous drop of fluid in a frame rotating with finite angular velocity, In: Elliptic and Parabolic Problems,World Sci., Singapore, 2002, pp. 180-203.Google Scholar
  12. 12.
    V. A. Solonnikov, On the evolution of an isolated volume of viscous incompressible capillary liquid for large values of time, Vestnik Leningr. Univ. Math. 20 (1987), no. 3, 52-58.MATHMathSciNetGoogle Scholar
  13. 13.
    V. A. Solonnikov, Unsteady motions of a finite isolated mass of a selfgravitating fluid, Leningrad Math. J. 1 (1990), no. 1, 227-276.MATHMathSciNetGoogle Scholar
  14. 14.
    V. A. Solonnikov, Solvability of a problem on the evolution of a viscous incompressible fluid bounded by a free surface in a finite time interval, St. Petersburg Math. J. 3 (1992), no. 1, 189-220.MathSciNetGoogle Scholar
  15. 15.
    V. A. Solonnikov, On the justification of the quasistationary approximation in the problem of motion of a viscous capillary drop, Interfaces Free Bound. 1 (1999), 125-173.MATHMathSciNetGoogle Scholar
  16. 16.
    V. A. Solonnikov, Lectures on evolution free boundary problems: classical solutions, Lect. Notes Math. 182 (2003), 123-175.Google Scholar
  17. 17.
    V. A. Solonnikov, Estimate of a generalized energy in the free boundary problem for viscous incompressible fluid, J. Math. Sci., New York 120 (2004), no. 5, 1766-1783.CrossRefMathSciNetGoogle Scholar
  18. 18.
    V. A. Solonnikov, On the problem of evolution of an isolated liquid mass, J. Math. Sci., New York 124 (2004), no. 6, 5442-5460.CrossRefMathSciNetGoogle Scholar
  19. 19.
    V. A. Solonnikov, Estimates of the resolvent of the operator appearing in the study of equilibrium figures of rotating viscous incompressible liquid, J. Math. Sci., New York 124 (2004), 5054-5069.CrossRefMathSciNetGoogle Scholar
  20. 20.
    V. A. Solonnikov, On the stability of nonsymmetric equilibrium figures of rotating viscous incompressible liquid, Interfaces Free Bound. 6 (2004), no. 4, 461-492.MATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    V. A. Solonnikov, On the stability of axisymmetric equilibrium figures of a rotating viscous incompressible fluid, St. Petersburg Math. J. 16 (2005), no. 2, 377-400.CrossRefMathSciNetGoogle Scholar
  22. 22.
    V. A. Solonnikov, On instability of equilibrium .gures of rotating viscous incompressible liquid, J. Math. Sci., New York 128 (2005), 3241- 3262.CrossRefMathSciNetGoogle Scholar
  23. 23.
    V. A. Solonnikov, On linear stability and instability of equilibrium figures of uniformly rotating fluid, In: Recent Advances in Elliptic and Parabolic Problems, World Sci., 2005, pp. 231-258.Google Scholar
  24. 24.
    V. A. Solonnikov, On instability of axially symmetric equilibrium figures of rotating viscous incompressible liquid, J. Math. Sci., New York 136 (2006), no.2, 3812-3825.CrossRefMathSciNetGoogle Scholar
  25. 25.
    V. A. Solonnikov, On a linear problem connected with equilibrium figures of ma uniformly rotating viscous liquid, J. Math. Sci., New York 132 (2006), no 4, 502-521.CrossRefMathSciNetGoogle Scholar
  26. 26.
    V. A. Solonnikov, Letter to the editor, J. Math. Sci., New York 135 (2006), no. 6, 3522-3528.CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Vsevolod Solonnikov
    • 1
  1. 1.V. A. Steklov Mathematical Institute RASRussia

Personalised recommendations