Exponential Mixing for Randomly Forced Partial Differential Equations: Method of Coupling

  • Armen Shirikyan
Part of the International Mathematical Series book series (IMAT, volume 7)


Lyapunov Function Polish Space Separable Banach Space Landau Equation Markov Semigroup 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Arnold, Random Dynamical Systems, Springer-Verlag, Berlin, 1998.MATHGoogle Scholar
  2. 2.
    J. Bricmont, A. Kupiainen, and R. Lefevere, Exponential mixing for the 2D stochastic Navier–Stokes dynamics, Commun. Math. Phys. 230(2002), no. 1, 87-132.MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    J. Bricmont, Ergodicity and mixing for stochastic partial di.erential equations, In: Proc. Intern. Congress Math. Vol. I (Beijing, 2002) (Beijing), Higher Ed. Press, 2002, pp. 567-585.Google Scholar
  4. 4.
    W. Doeblin, Eléments d’une théorie générale des chains simples constantes de Marko., Ann. Sci. é cole Norm. Sup. (3) 57(1940), 61-111.MATHGoogle Scholar
  5. 5.
    R. M. Dudley, Real Analysis and Probability, Wadsworth and Brooks/ Cole, Pacific Grove, California, 1989.Google Scholar
  6. 6.
    W. E, J. C. Mattingly, and Ya. G. Sinai, Gibbsian dynamics and ergodicity for the stochastically forced Navier–Stokes equation, Commun. Math. Phys. 224(2001), 83-106.MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    W. E and Ya. G. Sinai, New results in mathematical and statistical hydrodynamics, Russian Math. Surveys 55(2000), no. 4 , 635-666.Google Scholar
  8. 8.
    F. Flandoli and B. Maslowski, Ergodicity of the 2D Navier–Stokes equation under random perturbations, Commun. Math. Phys. 172(1995), 119-141.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    C. Foias and G. Prodi, Sur le comportement global des solutions nonstationnaires des équations de Navier–Stokes en dimension 2, Rend. Sem. Mat. Univ. Padova 39(1967), 1-34.MathSciNetMATHGoogle Scholar
  10. 10.
    M. Hairer, Exponential mixing properties of stochastic PDEs through asymptotic coupling, Probab. Theory Related Fields 124(2002), no. 3,345-380MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    R. Z. Has’minskii phasis Type="Italic">Stochastic Stability of Differential Equations, Sijthoff and Noordhoff, 1980.Google Scholar
  12. 12.
    N. V. Krylov, SPDEs in Lq((0, τ]], L p) spaces, Electron. J. Probab. 5(2000), no. 13, 29.Google Scholar
  13. 13.
    S. B. Kuksin and A. Shirikyan, Stochastic dissipative PDE’s and Gibbs measures, Commun. Math. Phys. 213(2000), 291-330.MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    S. B. Kuksin and A. Shirikyan, A coupling approach to randomly forced nonlinear PDE’s. I, Commun. Math. Phys. 221(2001), 351-366.MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    S. B. Kuksin and A. Shirikyan, Coupling approach to white-forced nonlinear PDE’s, J. Math. Pures Appl. 81(2002), 567-602.MATHMathSciNetGoogle Scholar
  16. 16.
    S. Kuksin and A. Shirikyan, Randomly forced CGL equation: stationary measures and the inviscid limit, J. Phys. A 37(2004), no. 12,3805-3822.MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    S. B. Kuksin, Ergodic theorems for 2D statistical hydrodynamics, Rev. Math. Phys. 14(2002), no. 6, 585-600.Google Scholar
  18. 18.
    S. B. Kuksin, Randomly Forced Nonlinear PDEs and Statistical Hydrodynamics in 2 Space Dimensions, European Math. Soc., Zürich,Google Scholar
  19. 19.
    T. Lindvall, Lectures on the Coupling Methods, John Willey and Sons, New York, 1992.Google Scholar
  20. 20.
    J. Mattingly, Exponential convergence for the stochastically forced Navier–Stokes equations and other partially dissipative dynamics, Commun. Math. Phys. 230(2002), no. 3, 421-462.MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    R. Mikulevicius and B. Rozovskii, A note on Krylov’s Lp-theory for systems of SPDEs, Electron. J. Probab. 6(2001), no. 12, 35.MathSciNetGoogle Scholar
  22. 22.
    S. P. Meyn and R. L. Tweedie, Markov Chains and Stochastic Stability, Springer-Verlag, London, 1993.MATHGoogle Scholar
  23. 23.
    N. Masmoudi and L.-S. Young, Ergodic theory of in.nite dimensional systems with applications to dissipative parabolic PDE’s, Commun. Math. Phys. (2002), 461-481.Google Scholar
  24. 24.
    C. Odasso, Exponential mixing for stochastic PDEs: the non-additive case, Probab. Theory Related Fields. [To appear]Google Scholar
  25. 25.
    A. Shirikyan, Exponential mixing for 2D Navier–Stokes equations perturbed by an unbounded noise, J. Math. Fluid Mech. 6(2004), no. 2,169-193.MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    A. Shirikyan, Ergodicity for a class of Markov processes and applications to randomly forced PDE’s. I, Russian J. Math. Phys. 12(2005), no. 1, 81-96.MATHMathSciNetGoogle Scholar
  27. 27.
    A. Shirikyan, Some mathematical problems of statistical hydrodynamics, In: The XIVth Intern. Congress Math. Phys., World Sci. Publ., pp. 304-311.Google Scholar
  28. 28.
    A. Shirikyan, Ergodicity for a class of Markov processes and applications to randomly forced PDE’s II, Discrete Contin. Dyn. Syst. Ser. B 6(2006), no. 4, 911-926.MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Ya. G. Sinai, Two results concerning asymptotic behavior of solutions of the Burgers equation with force, J. Stat. Phys. 64(1991), no. 1-2,1-12.Google Scholar
  30. 30.
    A. Yu. Veretennikov, Parametric and Non-Parametric Estimation of Markov Chains[in Russian], Moscow Univ. Press, Moscow, 2000.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Armen Shirikyan
    • 1
  1. 1.University of Cergy–PontoiseFrance

Personalised recommendations