Justifying Asymptotics for 3D Water–Waves

  • David Lannes
Part of the International Mathematical Series book series (IMAT, volume 7)


Sobolev Space Energy Estimate Shallow Water Equation Principal Symbol Asymptotic Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Alvarez-Samaniego and D. Lannes, Large Time Existence and3D Asymptotics for Water-Waves, Preprint, arXiv:math/0702015v1, Scholar
  2. 2.
    B. Alvarez-Samaniego and D. Lannes, A Nash–Moser theorem with parameters for evolution equations, Indiana Univ. Math. J. [To appear]Google Scholar
  3. 3.
    W. Ben Youssef and D. Lannes, The long wave limit for a general class of 2D quasilinear hyperbolic problems, Commun. Partial Differ. Equations 27(2002), 979-1020.MATHCrossRefGoogle Scholar
  4. 4.
    J. L. Bona, T. Colin, and D. Lannes, Long waves approximations for water waves, Arch. Ration. Mech. Anal. 178(2005), NO.3, 373-410.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    J. L. Bona, M. Chen, and J.-C. Saut, Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. I. Derivation and linear theory, J. Nonlinear Sci. 12(2002), no. 4, 283- 318.Google Scholar
  6. 6.
    F. Chazel, In.uence of topography on water waves, M2AN. [To appear]Google Scholar
  7. 7.
    D. Coutand and S. Shkoller, Well-posedness of the free-surface incompressible Euler equations with or without surface tension, Scholar
  8. 8.
    W. Craig, An existence theory for water waves and the Boussinesq and Korteweg-de Vries scaling limits, Commun. Partial Differ. Equations 10(1985), no. 8, 787-1003.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    W. Craig, Nonstrictly hyperbolic nonlinear systems, Math. Ann. 277(1987), no. 2, 213-232.MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    W.Craig, U. Schanz, and C. Sulem, The modulational regime of threedimensional water waves and the Davey–Stewartson system, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 14(1997), no. 5, 615-667.MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    W. Craig, C. Sulem, and P.-L. Sulem, Nonlinear modulation of gravity waves: a rigorous approach, Nonlinearity 5(1992), no. 2, 497-522.MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    M. W. Dingemans, Water Wave Propagation over Uneven Bottoms. Part 2: Nonlinear Wave Propagation, Advanced Series on Ocean Engineering, Vol. 13, World Sci. Publ., 1997.Google Scholar
  13. 13.
    T. Iguchi, A long wave approximation for capillary-gravity waves and an e.ect of the bottom, Commun. Partial Differ. Equations 32(2007), 37-85.MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    T. Kano, L’équation de Kadomtsev–Petviashvili approchant les ondes longues de surface de l’eau en écoulement trois-dimensionnel, In: Patterns and Waves, North-Holland, Amsterdam, 1986, pp. 431-444.Google Scholar
  15. 15.
    T. Kano and T. Nishida, Sur les ondes de surface de l’eau avec une justification mathematique des équations des ondes en eau peu profonde, J. Math. Kyoto Univ. 19(1979), no. 2, 335-370.MATHMathSciNetGoogle Scholar
  16. 16.
    T. Kano and T. Nishida, A mathematical justification for Korteweg-de Vries equation and Boussinesq equation of water surface waves, Osaka J. Math. 23(1986), no. 2, 389-413.MATHMathSciNetGoogle Scholar
  17. 17.
    D. Lannes, Well-posedness of the water-waves equations, J. Am. Math. Soc. 18(2005), 605-654.MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    D. Lannes and J.-C. Saut, Weakly transverse Boussinesq systems and the KP approximation, Nonlinearity 19(2006), 2853-2875.MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    H. Lindblad,Well-posedness for the linearized motion of an incompressible liquid with free surface boundary, Commun. Pure Appl. Math. 56(2003), no. 2, 153-197.MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    H. Lindblad, Well-posedness for the motion of an incompressible liquid with free surface boundary, Ann. Math. (2) 162(2005), no. 1, 109-194.MATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    Y. Matsuno, Nonlinear evolution of surface gravity waves on fluid of finite depth, Phys. Rev. Lett. 69(1992), no. 4, 609-611.MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    V. I. Nalimov, The Cauchy-Poisson problem[in Russian], Dinamika Sploshn. Sred. 18(1974), 104-210, 254.Google Scholar
  23. 23.
    L.V. Ovsjannikov, Cauchy problem in a scale of Banach spaces and its application to the shallow water theory justification, In: Appl. Methods Funct. Anal. Probl. Mech. Lect. Notes Math. 503, 1976, pp. 426-437.CrossRefMathSciNetGoogle Scholar
  24. 24.
    G. Schneider and C. E. Wayne, The long-wave limit for the water wave problem. I. The case of zero surface tension, Commun. Pure Appl. Math. 53(2000), no. 12, 1475-1535.CrossRefGoogle Scholar
  25. 25.
    G. Schneider and C. E. Wayne, The rigorous approximation of longwavelength capillary-gravity waves, Arch. Ration. Mech. Anal. 162(2002), no. 3, 247-285.MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    J. Shatah and C. Zeng, Geometry and a priori estimates for free boundary problems of the Euler’s equation, Scholar
  27. 27.
    J. D. Wright, Corrections to the KdV approximation for water waves, SIAM J. Math. Anal. 37(2005), no. 4, 1161-1206.CrossRefMathSciNetGoogle Scholar
  28. 28.
    S. Wu, Well-posedness in Sobolev spaces of the full water wave problem in2-D, Invent. Math. 130(1997), no. 1, 39-72.Google Scholar
  29. 29.
    S. Wu, Well-posedness in Sobolev spaces of the full water wave problem in 3-D, J. Am. Math. Soc. 12(1999), no. 2, 445-495.MATHCrossRefGoogle Scholar
  30. 30.
    H. Yosihara, Gravity waves on the free surface of an incompressible perfect fluid of finite depth, Publ. Res. Inst. Math. Sci. 18(1982), no. 1, 49-96.MATHMathSciNetGoogle Scholar
  31. 31.
    H. Yosihara, Capillary-gravity waves for an incompressible ideal fluid. J. Math. Kyoto Univ. 23(1983), no. 4, 649-694.MATHMathSciNetGoogle Scholar
  32. 32.
    V. E. Zakharov, Stability of periodic waves of finite amplitude on the surface of a deep fluid, J. Appl. Mech. Tech. Phys. 2(1968), 190-194.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • David Lannes
    • 1
  1. 1.University of Bordeaux 1France

Personalised recommendations