Increased Stability in the Cauchy Problem for Some Elliptic Equations

  • Victor Isakov
Part of the International Mathematical Series book series (IMAT, volume 6)


Inverse Problem Cauchy Problem Stability Estimate Inverse Scattering Cauchy Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Colton, H. Haddar, and M. Piana,The linear sampling method in inverse electromagnetic scattering theory,Inverse Probl.19 (2003), 105-137.CrossRefMathSciNetGoogle Scholar
  2. 2.
    T. DeLillo, V. Isakov, N. Valdivia, and L. Wang,The detection of surface vibrations from interior acousticalpressure,Inverse Probl.19 (2003), 507-524.MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    T. Hrycak and V. Isakov,Increased stability inthe continuation of solutions to the Helmholtz equation,Inverse Probl.20 (2004), 697-712.MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    L. Hörmander,Linear Partial Differential Operators,Springer-Verlag, Berlin,1966.Google Scholar
  5. 5.
    V. Isakov,Inverse Problems for Partial Differential Equations,Springer-Verlag, New York, 2005.Google Scholar
  6. 6.
    V. Isakov,Carleman type estimates and their applications,In:New Analytic and Geometric Methods in Inverse Problems,Springer-Verlag, 2004,pp. 93–127.Google Scholar
  7. 7.
    V. Isakov,Increased stability in the continuation fortheHelmholtz equation with variable coefficient, Contemp. Math.AMS,426 (2007), 255–269.MathSciNetGoogle Scholar
  8. 8.
    V. Isakov and S. Wu,On theory andapplications of the Helmholtz equationleast squares method in inverse scattering,Inverse Probl.18 (2002), 1141-1161.CrossRefMathSciNetGoogle Scholar
  9. 9.
    F. John, Continuousdependence on data for solutions ofpartial differential equations with a prescribed bound,Commun. Pure Appl. Math. 13 (1960), 551-587.MATHCrossRefGoogle Scholar
  10. 10.
    I. Lasiecka, R. Triggiani,and P. F. Yao,Inverse/observabilityestimates for secondorder hyperbolic equations with variable coefficients,J. Math. Anal. Appl.235 (1999), 13-57.MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    V. Palamodov,Stability in diffraction tomography and a nonlinear“basictheorem”,J. Anal. Math. 91 (2003), 247-68.MATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    D. Tataru,Carleman estimates and uniquecontinuation for solutions to boundary value problems,J. Math. Pures Appl.75 (1996), 367-408.MATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Victor Isakov
    • 1
  1. 1.Wichita State UniversityWichitaUSA

Personalised recommendations