Advertisement

Bursting Dynamics of the 3D Euler Equations in Cylindrical Domains

  • Francois Golse
  • Alex Mahalov
  • Basil Nicolaenko
Part of the International Mathematical Series book series (IMAT, volume 6)

Keywords

Euler Equation Global Regularity Cylindrical Domain Resonant System Resonant Orbit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. I. Arnold, Mathematical Methods of Classical Mechanics, Springer-Verlag, 1978.Google Scholar
  2. 2.
    V. I. Arnold, Small denominators. I. Mappings of the circumference onto itself, Am. Math. Soc. Transl. Ser. 2 46 (1965), p. 213-284.Google Scholar
  3. 3.
    V. I. Arnold and B. A. Khesin, Topological Methods in Hydrodynamics, Springer, 1997.Google Scholar
  4. 4.
    A. Babin, A. Mahalov, and B. Nicolaenko, Global splitting, integrability and regularity of 3D Euler and Navier–Stokes equations for uniformly rotating fluids, Eur. J. Mech. B 15 (1996), 291-300.MATHMathSciNetGoogle Scholar
  5. 5.
    A. Babin, A. Mahalov, and B. Nicolaenko, Global regularity and integrability of 3D Euler and Navier–Stokes equations for uniformly rotating fluids, Asymptotic Anal. 15 (1997), 103–150.MATHMathSciNetGoogle Scholar
  6. 6.
    A. Babin, A. Mahalov, and B. Nicolaenko, Global regularity of 3D rotating Navier–Stokes equations for resonant domains, Indiana Univ. Math. J. 48 (1999), no. 3, 1133-1176.Google Scholar
  7. 7.
    A. Babin, A. Mahalov, and B. Nicolaenko, 3D Navier–Stokes and Euler equations with initial data characterized by uniformly large vorticity, Indiana Univ. Math. J. 50 (2001), 1-35.MATHMathSciNetGoogle Scholar
  8. 8.
    J. T. Beale, T. Kato, and A. Majda, Remarks on the breakdown of smooth solutions for the 3D Euler equations, Commun. Math. Phys. 94 (1984), 61-66.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    A. S. Besicovitch, Almost Periodic Functions, Dover, New York, 1954.Google Scholar
  10. 10.
    N. N. Bogoliubov and Y. A. Mitropolsky, Asymptotic Methods in the Theory of Non-Linear Oscillations, Gordon and Breach Sci. Publ., New York, 1961.Google Scholar
  11. 11.
    J. P. Bourguignon and H. Brezis, Remark on the Euler equations, J. Func. Anal. 15 (1974), 341-363.MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Q. Chen, S. Chen, G. L. Eyink, and D. D. Holm, Intermittency in the joint cascade of energy and helicity, Phys. Rev. Letters 90 (2003), p. 214503.CrossRefGoogle Scholar
  13. 13.
    C. Corduneanu, Almost Periodic Functions, Wiley-Interscience, New York, 1968.MATHGoogle Scholar
  14. 14.
    J. Deng, T. Y. Hou, and X. Yu, Geometric properties and nonblowup of 3D incompressible Euler flow, Commun. Partial Differ. Equations 30 (2005), no. 3, 225-243.Google Scholar
  15. 15.
    R. J. DiPerna and P. L. Lions, Ordinary differential equations, Sobolev spaces and transport theory, Invent. Math. 98 (1989), 511-547.MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    C. L. Fefferman, Existence and smoothness of the Navier–Stokes equations, In: The Millennium Prize Problems, Clay Math. Inst., Cambridge, MA (2006), pp. 57-67.Google Scholar
  17. 17.
    U. Frisch, Turbulence: the Legacy of A. N. Kolmogolov, Cambridge University Press, Cambridge, 1995.Google Scholar
  18. 18.
    E. Frolova, A. Mahalov, and B. Nicolaenko, Restricted interactions and global regularity of 3D rapidly rotating Navier–Stokes equations in cylindrical domains, J. Math. Sci., New York. [To appear]Google Scholar
  19. 19.
    E. B. Gledzer, System of hydrodynamic type admitting two quadratic integrals of motion, Sov. Phys. Dokl. 18 (1973), 216-217.MATHGoogle Scholar
  20. 20.
    E. B. Gledzer, F. V. Dolzhanskij, and A. M. Obukhov, Systems of Hydrodynamic Type and Their Application [in Russian], Nauka, Moscow, 1981.Google Scholar
  21. 21.
    F. Golse, A. Mahalov, and B. Nicolaenko, Infinite dimensional systems of coupled rigid bodies asymptotic to the 3D Euler equations. [In preparation]Google Scholar
  22. 22.
    J. Guckenheimer and A. Mahalov, Resonant triad interaction in symmetric systems, Physica D 54 (1992), 267-310.MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    T. Y. Hou and R. Li, Dynamic depletion of vortex stretching and non-blowup of the 3D incompressible Euler equations, J. Nonlinear Sci. 16 (2006), 639–664.MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    T. Kato, Nonstationary flows of viscous and ideal fluids inR3, J. Func. Anal. 9 (1972), 296-305.MATHCrossRefGoogle Scholar
  25. 25.
    R. M. Kerr, Evidence for a singularity of the three dimensional, incompressible Euler equations, Phys. Fluids 5 (1993), no. 7, 1725-1746.Google Scholar
  26. 26.
    M. Lesieur, Turbulence in Fluids, 2nd edition, Kluwer, Dortrecht, 1990.Google Scholar
  27. 27.
    P. L. Lions, Mathematical Topics in Fluid Mechanics: Incompressible Models, Vol 1, Oxford University Press, Oxford, 1998.MATHGoogle Scholar
  28. 28.
    A. Mahalov, The instability of rotating fluid columns subjected to a weak external Coriolis force, Phys. Fluids A 5 (1993), no. 4, 891-900.Google Scholar
  29. 29.
    A. Mahalov, B. Nicolaenko, C. Bardos, and F. Golse, Non blow-up of the 3D Euler equations for a class of three-dimensional initial data in cylindrical domains, Methods Appl. Anal. 11 (2004), no. 4, 605-634.Google Scholar
  30. 30.
    S. V. Manakov, Note on the integration of Euler’s equations of the dynamics of an n-dimensional rigid body, Funct. Anal. Appl. 10 (1976), no. 4, 328-329.Google Scholar
  31. 31.
    J. J. Moreau, Une methode de cinematique fonctionelle en hydrodynamicque [in French], C. R. Acad. Sci. Paris 249 (1959), 2156-2158MATHMathSciNetGoogle Scholar
  32. 32.
    J. J. Moreau, Constantes d’un ilôt tourbillonaire en fluide parfait barotrope [in French], C. R. Acad. Sci. Paris 252 (1961), 2810-2812MATHMathSciNetGoogle Scholar
  33. 33.
    H. K. Moffatt, The degree of knottedness of tangled vortex lines, J. Fluid Mech. 106 (1969), 117-129.CrossRefGoogle Scholar
  34. 34.
    H. Poincaré, Sur la précession des corps déformables [in French], Bull. Astronomique 27 (1910), 321-356.Google Scholar
  35. 35.
    S. L. Sobolev, On one new problem in mathematical physics [in Russian], Izv. Akad. Nauk SSSR Ser. Mat. 18 (1954), no. 1, 3–50.Google Scholar
  36. 36.
    S. M. Visik, On invariant characteristics of quadratically nonlinear systems of cascade type, Sov. Math. Dokl. 17 (1976), 895-899.MATHGoogle Scholar
  37. 37.
    J. Weiland and H. Wilhelmsson, Coherent Nonlinear Interactions of Waves in Plasmas, Pergamon, Oxford, 1977.Google Scholar
  38. 38.
    V. I. Yudovich, Non-stationary flow of an ideal incompressible liquid, U.S.S.R. Comput. Math. Math. Phys. 3 (1963), 1407-1456.Google Scholar
  39. 39.
    V. I. Yudovich, Uniqueness theorem for the basic nonstationary problem in the dynamics of an ideal incompressible fluid, Math. Res. Lett. 2 (1995), 27-38.MATHMathSciNetGoogle Scholar
  40. 40.
    V. E. Zakharov and S. V. Manakov, Resonant interactions of wave packets in nonlinear media, Sov. Phys. JETP Lett. 18 (1973), 243-245.Google Scholar
  41. 41.
    V. E. Zakharov and S. V. Manakov, The theory of resonance interaction of wave packets in nonlinear media, Sov. Phys. JETP 42 (1976), 842-850.MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Francois Golse
    • 1
  • Alex Mahalov
    • 2
  • Basil Nicolaenko
    • 3
  1. 1.École PolytechniquePalaiseau
  2. 2.Arizona State UniversityTempe
  3. 3.Arizona State UniversityTempe

Personalised recommendations