Existence Theorems for the 3D–Navier–Stokes System Having as Initial Conditions Sums of Plane Waves

  • Efim Dinaburg
  • Yakov Sinai
Part of the International Mathematical Series book series (IMAT, volume 6)


Power Series Global Solution Recurrent Relation Global Existence Existence Theorem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Leray, Étude de diverses équations intégrales non linéaires et de quelques probl`mes que pose l’hydrodynamique, J. Math. Pures Appl. Sér. IX 12 (1933), 1–82.MATHGoogle Scholar
  2. 2.
    Y. Giga, K. Innui, A. Makhalov, and J. Saal, Global Solvability of the Navier–Stokes Equations in Spaces Based on Some Closed Frequency Set, Preprint, Hokkaido Univ. Ser. Math. no. 795 (2006). [To appear in Ann. Math. Stud.]Google Scholar
  3. 3.
    E. Hopf, Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen, Math. Nach. 4 (1950/51), 213-231.MathSciNetGoogle Scholar
  4. 4.
    T. Kato, Strong L p solutions of the Navier–Stokes equation inm, with applications to weak solutions, Math. Z. 187 (1984), 471–480.Google Scholar
  5. 5.
    D. Li and Ya. G. Sinai, Blow ups of complex solutions of the 3D Navier–Stokes system and renormalization group method, 2006. [In preparation]Google Scholar
  6. 6.
    Ya. G. Sinai, Power series for solutions of the 3D Navier–Stokes system on3, J. Stat. Phys. 121 (2005), no. 5-6, 779-803.Google Scholar
  7. 7.
    Ya. G. Sinai, Diagramatic approach to the 3D Navier–Stokes system, Russ. Math. Surv. 60 (2005), no. 5, 47-70.Google Scholar
  8. 8.
    M. I. Vishik and A. V. Fursikov, Mathematical Problems of Statistical Hydromechanics, Kluwer Acad. Publ., Dordrecht–Boston–London, 1988.MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Efim Dinaburg
    • 1
  • Yakov Sinai
    • 2
    • 3
  1. 1.O. Yu. Schmidt Institute of Physics of Earth RASMoscowRussia
  2. 2.Princeton UniversityPrincetonUSA
  3. 3.L. D. Landau Institute of Theoretical Physics RASMoscowRussia

Personalised recommendations