Advertisement

Attractors for Nonautonomous Navier–Stokes System and Other Partial Differential Equations

  • Vladimir Chepyzhov
  • Mark Vishik
Part of the International Mathematical Series book series (IMAT, volume 6)

Keywords

Fractal Dimension Global Attractor Stokes System Landau Equation Time Symbol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Amerio and G. Prouse, Abstract Almost Periodic Functions and Functional Equations, Van Nostrand, New York, 1971.Google Scholar
  2. 2.
    J. Arrieta, A. N. Carvalho, and J. K. Hale, A damped hyperbolic equation with critical exponent, Commun. Partial Differ. Equations 17 (1992), 841–866.CrossRefMathSciNetMATHGoogle Scholar
  3. 3.
    A. V. Babin, Attractors of Navier–Stokes equations In: Handbook of Mathematical Fluid Dynamics. Vol. II. Amsterdam, North-Holland, 2003, pp. 169–222.CrossRefGoogle Scholar
  4. 4.
    A. V. Babin and M. I. Vishik, Attractors of evolutionary partial differential equations and estimates of their dimensions, Russian Math. Surv. 38 (1983), no. 4, 151–213.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    A. V. Babin and M. I. Vishik, Regular attractors of semigroups and evolution equations, J. Math. Pures Appl. 62 (1983), no. 4, 441–491.MATHMathSciNetGoogle Scholar
  6. 6.
    A. V. Babin and M. I. Vishik, Maximal attractors of semigroups corresponding to evolution differential equations, Math. USSR Sbornik 54 (1986), no. 2, 387–408.MATHCrossRefGoogle Scholar
  7. 7.
    A. V. Babin and M. I. Vishik, Unstable invariant sets of semigroups of non-linear operators and their perturbations, Russian Math. Surv. 41 (1986), 1–41.MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    A. V. Babin and M. I. Vishik, Uniform finite-parameter asymptotics of solutions of nonlinear evolutionary equations, J. Math. Pures Appl. 68 (1989), 399–455.MATHMathSciNetGoogle Scholar
  9. 9.
    A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, North Holland, 1992.Google Scholar
  10. 10.
    M. V. Bartucelli, P. Constantin, C. R. Doering, J. D. Gibbon, and M. Gisselfält, On the possibility of soft and hard turbulence in the complex Ginzburg–Landau equation, Physica D 44 (1990), 412–444.Google Scholar
  11. 11.
    J. E. Billotti and J. P. LaSalle, Dissipative periodic processes, Bull. Amer. Math. Soc. 77 (1971), 1082–1088.MATHMathSciNetGoogle Scholar
  12. 12.
    M. A. Blinchevskaya and Yu. S. Ilyashenko, Estimate for the entropy dimension of the maximal attractor for k-contracting systems in an infinite-dimensional space, Russian J. Math. Phys. 6 (1999), no. 1, 20–26.MATHGoogle Scholar
  13. 13.
    S. M. Borodich, On the behavior as t → +∞ of solutions of some nonautonomous equations, Moscow Univ. Math. Bull. 45 (1990), no. 6, 19–21.Google Scholar
  14. 14.
    D. N. Cheban and D. S. Fakeeh, Global Attractors of the Dynamical Systems without Uniqueness [in Russian], Sigma, Kishinev, 1994.Google Scholar
  15. 15.
    V. V. Chepyzhov and A. A. Ilyin, A note on the fractal dimension of attractors of dissipative dynamical systems, Nonlinear Anal., Theory Methods Appl. 44 (2001), no. 6, 811–819.MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    V. V. Chepyzhov and A. A. Ilyin, On the fractal dimension of invariant sets; applications to Navier–Stokes equations, Discr. Cont. Dyn. Syst. 10 (2004), no. 1-2, 117-135.Google Scholar
  17. 17.
    V. V. Chepyzhov, A. Yu. Goritsky, and M. I. Vishik, Integral manifolds and attractors with exponential rate for nonautonomous hyperbolic equations with dissipation, Russian J. Math. Phys. 12 (2005), no. 1, 17–39.MATHGoogle Scholar
  18. 18.
    V. V. Chepyzhov and M. I. Vishik, Nonautonomous dynamical systems and their attractors, Appendix in: M. I. Vishik, Asymptotic Behavior of Solutions of Evolutionary Equations, Cambridge Univ. Press, Cambridge, 1992.Google Scholar
  19. 19.
    V. V. Chepyzhov and M. I. Vishik, Nonautonomous evolution equations with almost periodic symbols, Rend. Semin. Mat. Fis. Milano LXXII (1992), 185–213.MathSciNetGoogle Scholar
  20. 20.
    V. V. Chepyzhov and M. I. Vishik, Attractors for nonautonomous evolution equations with almost periodic symbols, C. R. Acad. Sci. Paris Sér. I 316 (1993), 357–361.MATHMathSciNetGoogle Scholar
  21. 21.
    V. V. Chepyzhov and M. I. Vishik, Families of semiprocesses and their attractors, C. R. Acad. Sci. Paris Sér. I 316 (1993), 441–445.MATHMathSciNetGoogle Scholar
  22. 22.
    V. V. Chepyzhov and M. I. Vishik, Dimension estimates for attractors and kernel sections of nonautonomous evolution equations, C. R. Acad. Sci. Paris Sér. I 317 (1993), 367–370.MathSciNetGoogle Scholar
  23. 23.
    V. V. Chepyzhov and M. I. Vishik, Nonautonomous evolution equations and their attractors, Russian J. Math. Phys. 1, (1993), no. 2, 165–190.MATHMathSciNetGoogle Scholar
  24. 24.
    V. V. Chepyzhov and M. I. Vishik, A Hausdorff dimension estimate for kernel sections of nonautonomous evolution equations, Indiana Univ. Math. J. 42 (1993), no. 3, 1057–1076.MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    V. V. Chepyzhov and M. I. Vishik, Attractors of nonautonomous dynamical systems and their dimension, J. Math. Pures Appl. 73 (1994), no. 3, 279–333.MATHMathSciNetGoogle Scholar
  26. 26.
    V. V. Chepyzhov and M. I. Vishik, Periodic processes and nonautonomous evolution equations with time-periodic terms, Topol. Meth. Nonl. Anal. J. Juliusz Schauder Center 4 (1994), no. 1, 1–17.MATHMathSciNetGoogle Scholar
  27. 27.
    V. V. Chepyzhov and M. I. Vishik, Attractors of nonautonomous evolution equations with translation-compact symbols, In: Operator Theory: Advances and Applications 78, Bikhäuser, 1995, pp. 49–60.Google Scholar
  28. 28.
    V. V. Chepyzhov and M. I. Vishik, Nonautonomous evolutionary equations with translation compact symbols and their attractors, C. R. Acad. Sci. Paris Sér. I 321 (1995), 153–158.MATHMathSciNetGoogle Scholar
  29. 29.
    V. V. Chepyzhov and M. I. Vishik, Attractors of nonautonomous evolutionary equations of mathematical physics with translation compact symbols, Russian Math. Surv. 50 (1995), no. 4.Google Scholar
  30. 30.
    V. V. Chepyzhov and M. I. Vishik, Trajectory attractors for evolution equations, C. R. Acad. Sci. Paris Sér. I 321 (1995), 1309–1314.MATHMathSciNetGoogle Scholar
  31. 31.
    V. V. Chepyzhov and M. I. Vishik, Trajectory attractors for reaction-diffusion systems, Topol. Meth. Nonl. Anal. J. Juliusz Schauder Center 7 (1996), no. 1, 49–76.MATHMathSciNetGoogle Scholar
  32. 32.
    V. V. Chepyzhov and M. I. Vishik, Trajectory attractors for 2D Navier–Stokes systems and some generalizations, Topol. Meth. Nonl. Anal. J. Juliusz Schauder Center 8 (1996), 217–243.MATHMathSciNetGoogle Scholar
  33. 33.
    V. V. Chepyzhov and M. I. Vishik, Evolution equations and their trajectory attractors, J. Math. Pures Appl. 76 (1997), no. 10, 913–964.MATHMathSciNetGoogle Scholar
  34. 34.
    V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, Am. Math. Soc., Providence RI, 2002.Google Scholar
  35. 35.
    V. V. Chepyzhov and M. I. Vishik, Nonautonomous 2D Navier–Stokes system with a simple global attractor and some averaging problems, El. J. ESAIM: COCV 8 (2002), 467–487.MATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    V. V. Chepyzhov, M. I. Vishik, and W. L. Wendland, On Nonautonomous sine-Gordon type equations with a simple global attractor and some averaging, Discr. Cont. Dyn. Syst. 12 (2005), no. 1, 27–38.MATHMathSciNetGoogle Scholar
  37. 37.
    I. D. Chueshov, Global attractors of nonlinear problems of mathematical physics, Russian Math. Surv. 48 (1993), no. 3, 133–161.CrossRefMathSciNetGoogle Scholar
  38. 38.
    I. D. Chueshov, Introduction to the Theory of Infinite-Dimensional Dissipative Systems [in Russian] Acta, Kharkov, 1999.Google Scholar
  39. 39.
    P. Constantin and C. Foias, Global Lyapunov exponents, Kaplan–Yorke formulas and the dimension of the attractors for 2D Navier–Stokes equations, Commun. Pure Appl. Math. 38 (1985), 1–27.MATHCrossRefMathSciNetGoogle Scholar
  40. 40.
    P. Constantin and C. Foias, Navier–Stokes Equations, Univ. Chicago Press, Chicago– London, 1989.Google Scholar
  41. 41.
    P. Constantin, C. Foias, and R. Temam, Attractors representing turbulent flows, Mem. Am. Math. Soc. 53, 1985.Google Scholar
  42. 42.
    P. Constantin, C. Foias, and R. Temam, On the dimension of the attractors in two-dimensional turbulence, Physica D 30 (1988), 284–296.MATHCrossRefMathSciNetGoogle Scholar
  43. 43.
    J. H. Conway and N. J. A. Sloan, Sphere Packing, Lattices and Groups, Springer-Verlag, New York, etc., 1988.Google Scholar
  44. 44.
    C. M. Dafermos, Semiflows generated by compact and uniform processes, Math. Syst. Theory 8 (1975), 142–149.MATHCrossRefMathSciNetGoogle Scholar
  45. 45.
    C. M. Dafermos, Almost periodic processes and almost periodic solutions of evolutional equations, In: Proc. Univ. Florida, Intern. Symp., New York Acad. Press, 1977, pp. 43–57.Google Scholar
  46. 46.
    C. R. Doering, J. D. Gibbon, D. D. Holm, and B. Nicolaenco, Low-dimensional behavior in the complex Ginzburg–Landau equation, Nonlinearity 1 (1988), 279–309.MATHCrossRefMathSciNetGoogle Scholar
  47. 47.
    C. R. Doering, J. D. Gibbon, and C. D. Levermore, Weak and strong solutions of the complex Ginzburg–Landau equation, Physica D 71 (1994), 285–318.MATHCrossRefMathSciNetGoogle Scholar
  48. 48.
    A. Douady and J. Oesterlé, Dimension de Hausdorff des attracteurs [in French], C. R. Acad. Sci. Paris Sér. I textbf290, (1980), 1135–1138.Google Scholar
  49. 49.
    A. Eden, C. Foias, and R. Temam, Local and global Lyapunov exponents, J. Dyn. Differ. Equations 3 (1991), no. 1, 133–177.MATHCrossRefMathSciNetGoogle Scholar
  50. 50.
    A. Eden, C. Foias, B. Nicolaenco, and R. Temam, Exponential Attractors for Dissipative Evolution Equations, John Wiley and Sons, New York, 1995.Google Scholar
  51. 51.
    M. Efendiev, A. Miranville, and S. Zelik, Exponential attractors for a nonlinear reaction-diffusion system in3, C. R. Acad. Sci. Paris Sér. I 330 (2000), 713–718.Google Scholar
  52. 52.
    M. Efendiev, S. Zelik, and A. Miranville, Exponential attractors and finite-dimensional reduction for nonautonomous dynamical systems, Proc. R. Soc. Edinb., Sect. A, Math. 135 (2005), no. 4, 703–730.MATHCrossRefMathSciNetGoogle Scholar
  53. 53.
    M. Efendiev and S. Zelik, Attractors of the reaction–diffusion systems with rapidly oscillating coefficients and their homogenization, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 19 (2002), no. 6, 961–989.MATHCrossRefMathSciNetGoogle Scholar
  54. 54.
    P. Fabrie and A. Miranville, Exponential attractors for nonautonomous first-order evolution equations, Discr. Cont. Dyn. Syst. 4 (1998), no. 2, 225–240.MATHMathSciNetGoogle Scholar
  55. 55.
    E. Feireisl, Attractors for wave equations with nonlinear dissipation and critical exponent, C. R. Acad. Sci. Paris Sér. I 315 (1992), 551–555.MATHMathSciNetGoogle Scholar
  56. 56.
    E. Feireisl, Exponentially attracting finite-dimensional sets for the processes generated by nonautonomous semilinear wave equations, Funk. Ekv. 36 (1993), 1–10.MATHMathSciNetGoogle Scholar
  57. 57.
    E. Feireisl, Finite-dimensional behavior of a nonautonomous partial differential equation: Forced oscillations of an extensible beam, J. Differ. Equations 101 (1993), 302–312.MATHCrossRefMathSciNetGoogle Scholar
  58. 58.
    C. Foias and R. Temam, Some analytic and geometric properties of the solutions of the Navier–Stokes equations, J. Math. Pures Appl. 58, 3 (1979), 339–368.MATHMathSciNetGoogle Scholar
  59. 59.
    C. Foias and R. Temam, Finite parameter approximative structure of actual flows, In Nonlinear Problems: Problems and Future (A. R. Bishop, D. K. Campbell, and B. Nicolaenco, Eds.), North-Holland, Amsterdam, 1982.Google Scholar
  60. 60.
    C. Foias and R. Temam, Asymptotic numerical analysis for the Navier–Stokes equations, InL Nonlinear Dynamics and Turbulence (G. I. Barenblatt, G. Iooss, D. D. Joseph, Eds.), Pitman, London, 1983, pp. 139–155.Google Scholar
  61. 61.
    C. Foias, O. Manley, R. Rosa, and R. Temam, Navier–Stokes Equations and Turbulence, Cambridge Univ. Press, Cambridge, 2001.MATHGoogle Scholar
  62. 62.
    F. Gazzola and M. Sardella, Attractors for families of processes in weak topologies of Banach spaces, Discr. Cont. Dyn. Syst. 4 (1998), no. 3, 455–466.Google Scholar
  63. 63.
    J. M. Ghidaglia and B. Héron, Dimension of the attractors associated to the Ginzburg–Landau partial differential equation, Physica 28D (1987), 282–304.Google Scholar
  64. 64.
    J. M. Ghidaglia and R. Temam, Attractors for damped nonlinear hyperbolic equations, J. Math. Pures Appl. 66 (1987), 273–319.MATHMathSciNetGoogle Scholar
  65. 65.
    A. Yu. Goritsky and M. I. Vishik, Integral manifolds for nonautonomous equations, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. 115ˆ 21 (1997), 109–146.Google Scholar
  66. 66.
    M. Grasselli and V. Pata, On the damped semilinear wave equation with critical exponent, Discr. Cont. Dyn. Syst. (2003), 351–358.Google Scholar
  67. 67.
    J. K. Hale, Asymptotic behavior and dynamics in infinite dimensions, Research Notes Math. 132 (1985), 1–42.MathSciNetGoogle Scholar
  68. 68.
    J. K. Hale, Asymptotic behavior of dissipative systems, %Math. Surveys and Mon., 25, Am. Math. Soc., Providence RI, 1988.Google Scholar
  69. 69.
    J. K. Hale and J. Kato, Phase space of retarded equations with infinite delay, Tohôku Math. J. 21 (1978), 11–41.MATHMathSciNetGoogle Scholar
  70. 70.
    J. K. Hale and S. M. Verduyn-Lunel, Averaging in infinite dimensions, J. Int. Eq. Appl. 2 (1990), no. 4, 463–494.MATHMathSciNetCrossRefGoogle Scholar
  71. 71.
    A. Haraux, Two remarks on dissipative hyperbolic problems, In: Nonlinear Partial Differential Equations and Their Applications (H. Brezis and J. L. Lions, Eds.) Pitman, 1985, pp.161–179.Google Scholar
  72. 72.
    A. Haraux, Attractors of asymptotically compact processes and applications to nonlinear partial differential equations, Commun. Partial Differ. Equations 13 (1988), 1383–1414.MATHCrossRefMathSciNetGoogle Scholar
  73. 73.
    A. Haraux, Systèmes Dynamiques Dissipatifs et Applications [in French], Masson, Paris etc., 1991.Google Scholar
  74. 74.
    D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lect. Notes Math. 840, Springer-Verlag, 1981.Google Scholar
  75. 75.
    B. Hunt, Maximal local Lyapunov dimension bounds the box dimension of chaotic attractors, Nonlinearity 9 (1996), 845–852.MATHCrossRefMathSciNetGoogle Scholar
  76. 76.
    Yu. S. Ilyashenko, Weakly contracting systems and attractors of Galerkin approximation for the Navier–Stokes equations on a two-dimensional torus, Sel. Math. Sov. 11 (1992), no. 3, 203–239.Google Scholar
  77. 77.
    A. A. Ilyin, Lieb–Thirring inequalities on the N-sphere and in the plane and some applications, Proc. London Math. Soc. (3) 67 (1993), 159–182.MATHCrossRefMathSciNetGoogle Scholar
  78. 78.
    A. A. Ilyin, Attractors for Navier–Stokes equations in domain with finite measure, Nonlinear Anal., Theory Methods Appl. 27 (1996), no. 5, 605–616.MATHCrossRefMathSciNetGoogle Scholar
  79. 79.
    A. A. Ilyin, Averaging principle for dissipative dynamical systems with rapidly oscillating right-hand sides, Sb. Math. 187 (1996), 5, 635-677.MATHCrossRefMathSciNetGoogle Scholar
  80. 80.
    A. A. Ilyin, Global averaging of dissipative dynamical systems, Rend. Acad. Naz. Sci. XL, Mem. Mat. Appl. 116ˆ 22 (1998), 167–191.Google Scholar
  81. 81.
    L. V. Kapitanskii, Minimal compact global attractor for a damped semilinear wave equations, Commun. Partial Differ. Equations 20 (1995), no. 7–8, 1303–1323.CrossRefMathSciNetGoogle Scholar
  82. 82.
    J. L. Kaplan and J. A. Yorke, Chaotic behavior of multi-dimensional difference equations, In: Functional Differential Equations and Approximations of Fixed Points (H. O. Peitgen and H. O. Walter Eds.), Lect. Notes Math. 730 (1979), p. 219.Google Scholar
  83. 83.
    A. Kolmogorov and V. Tikhomirov, ε -entropy and ε -capacity of sets in functional spaces, [in Russian], Uspekhi Mat. Nauk 14 (1959), 3–86; English transl.: Selected Works of A. N. Kolmogorov. III, Dordrecht, Kluwer, 1993.MATHGoogle Scholar
  84. 84.
    N. Kopell and L. N. Howard, Plane wave solutions to reaction-diffusion equations, Stud. Appl. Math. 52 (1973), no. 5, 291–328; 3–86.MathSciNetGoogle Scholar
  85. 85.
    I. P. Kornfeld, Ya.G. Sinai, and S. V. Fomin, % Ergodic Theory [in Russian], Nauka, Moscow, 1980.Google Scholar
  86. 86.
    Y. Kuramoto and T. Tsuzuki, On the formation of dissipative structures in reaction-diffusion systems, Reduction Perturbation Approach, Progr. Theor. Phys. 54 (1975), 687–699.Google Scholar
  87. 87.
    O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach, New York, 1969.MATHGoogle Scholar
  88. 88.
    O. A. Ladyzhenskaya, On the dynamical system generated by the Navier–Stokes equations, J. Soviet Math. 34 (1975), 458–479.CrossRefGoogle Scholar
  89. 89.
    O. A. Ladyzhenskaya, On finite dimension of bounded invariant sets for the Navier–Stokes system and other dynamical systems, J. Soviet Math. 28 (1982), no. 5, 714–725.CrossRefGoogle Scholar
  90. 90.
    O. A. Ladyzhenskaya, On finding the minimal global attractors for the Navier–Stokes equations and other PDEs, Russian Math. Surv. 42 (1987), no. 6, 27-73.MATHCrossRefGoogle Scholar
  91. 91.
    O. A. Ladyzhenskaya, Attractors for Semigroups and Evolution Equations, Cambridge Univ. Press, Cambridge–New York, 1991.MATHGoogle Scholar
  92. 92.
    B. Levitan and V. Zhikov, Almost Periodic Functions and Differential Equations, Cambridge Univ. Press, Cambridge, 1982.MATHGoogle Scholar
  93. 93.
    P. Li and S.–T. Yau, On the Schrödinger equation and the eigenvalue problem, Commun. Math. Phys. 8 (1983), 309–318.Google Scholar
  94. 94.
    E. Lieb and W. Thirring, Inequalities for the moments of the eigenvalues of Schrödinger equations and their relations to Sobolev inequalities, In: Studies in Mathematical Physics, essays in honour of Valentine Bargmann, Princeton Univ. Press, 1976, pp. 269–303.Google Scholar
  95. 95.
    J.-L. Lions and E. Magenes, Problèmes aux Limites non Homogènes et Applications. Vol. 1, Dunod, Paris, 1968.Google Scholar
  96. 96.
    J.-L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires, Dunod, Paris, 1969.Google Scholar
  97. 97.
    V. X. Liu, A sharp lower bound for the Hausdorff dimension of the global attractor of the 2D Navier–Stokes equations, Commun. Math. Phys. 158 (1993), 327–339.MATHCrossRefGoogle Scholar
  98. 98.
    S. Lu, Attractors for nonautonomous 2D Navier–Stokes equations with less regular normal forces, J. Differ. Equations 230 (2006), 196–212.MATHCrossRefGoogle Scholar
  99. 99.
    S. Lu, H. Wu, and C. Zhong, Attractors for nonautonomous 2D Navier–Stokes equations with normal external forces, Discr. Cont. Dyn. Syst. 13 (2005), no. 3, 701–719.MATHMathSciNetCrossRefGoogle Scholar
  100. 100.
    G. Métivier, Valeurs propres d’opérateurs définis sur la restriction de systèmes variationnels à des sous-espaces, J. Math. Pures Appl. 57 (1978), 133–156.MATHMathSciNetGoogle Scholar
  101. 101.
    A. Mielke, The Ginzburg–Landau equation and its role as a modulation equation, In: Handbook of Dynamical Systems, Vol.2, North-Holland, Amsterdam, 2002, pp. 759–834.Google Scholar
  102. 102.
    A. Mielke, Bounds for the solutions of the complex Ginzburg–Landau equation in terms of the dispersion parameters, Physica D 117 (1998), no. 1-4, 106–116.MATHCrossRefMathSciNetGoogle Scholar
  103. 103.
    A. Mielke, The complex Ginzburg–Landau equation on large and unbounded domains: sharper bounds and attractors, Nonlinearity 10 (1997), 199–222.MATHCrossRefMathSciNetGoogle Scholar
  104. 104.
    R. K. Miller, Almost periodic differential equations as dynamical systems with applications to the existence of almost periodic solutions, J. Differ. Equations 1 (1965), 337–395.MATHCrossRefGoogle Scholar
  105. 105.
    R. K. Miller and G. R. Sell, Topological dynamics and its relation to integral and nonautonomous systems. In: International Symposium. Vol. I, 1976, Academic Press, New York, 223–249.Google Scholar
  106. 106.
    A. Miranville, Exponential attractors for a class of evolution equations by a decomposition method, C. R. Acad. Sci. Paris Sér. I 328 (1999), 145–150.MATHMathSciNetGoogle Scholar
  107. 107.
    A. Miranville and X. Wang, Attractors for nonautonomous nonhomogeneous Navier–Stokes equations, Nonlinearity 10 (1997), 1047–1061.MATHCrossRefMathSciNetGoogle Scholar
  108. 108.
    X. Mora and J. Sola Morales, Existence and nonexistence of finite-dimensional globally attracting invariant manifolds in semilinear damped wave equations, In: Dynamics of Infinite-Dimensional Systems (ed. N. S. Chow and J. K. Hale), Springer-Verlag, 1987, 187–210.Google Scholar
  109. 109.
    Sh. M. Nasibov, On optimal constants in some Sobolev inequalities and their applications to a nonlinear Schrödinger equation, Soviet Math. Dokl. 40 (1990), 110–115.Google Scholar
  110. 110.
    V. Pata, G. Prouse, and M. I. Vishik, Travelling waves of dissipative nonautonomous hyperbolic equations in a strip, Adv. Differ. Equ. 3 (1998), 249–270.MATHMathSciNetGoogle Scholar
  111. 111.
    V. Pata and S. Zelik, A remark on the weakly damped wave equation, Commun. Pure Appl. Math. 5 (2006), 609–614.MathSciNetGoogle Scholar
  112. 112.
    J. C. Robinson, Infinite-Dimensional Dynamical Systems, Cambridge Univ. Press, Cambridge–New York, 2001.Google Scholar
  113. 113.
    G. R. Sell, Nonautonomous differential equations and topological dynamics I, II Trans. Am. Math. Soc. 127 (1967), 241–262; 263–283.Google Scholar
  114. 114.
    G. R. Sell, Lectures on Topological Dynamics and Differential Equations, Princeton, New York, 1971.Google Scholar
  115. 115.
    G. Sell and Y. You, Dynamics of Evolutionary Equations, Springer-Verlag, New York, 2002.MATHGoogle Scholar
  116. 116.
    M. W. Smiley, Regularity and asymptotic behavior of solutions of nonautonomous differential equations, J. Dyn. Differ. Equations 7 (1995), no. 2, 237–262.MATHCrossRefMathSciNetGoogle Scholar
  117. 117.
    R. Temam, On the Theory and Numerical Analysis of the Navier–Stokes Equations, North-Holland, 1979.Google Scholar
  118. 118.
    R. Temam, Navier–Stokes Equations and Nonlinear Functional Analysis, Philadelphia, 1995.Google Scholar
  119. 119.
    R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, 1997.MATHGoogle Scholar
  120. 120.
    P. Thieullen, Entropy and the Hausdorff dimension for infinite-dimensional dynamical systems, J. Dyn. Differ. Equations 4 (1992), no. 1, 127–159.MATHCrossRefMathSciNetGoogle Scholar
  121. 121.
    H. Triebel, Interpolation Theory, Functional Spaces, Differential Operators, North-Holland, Amsterdam-New York, 1978.Google Scholar
  122. 122.
    M. I. Vishik, Asymptotic Behavior of Solutions of Evolutionary Equations, Cambridge Univ. Press, Cambridge, 1992.Google Scholar
  123. 123.
    M. I. Vishik and V. V. Chepyzhov, Attractors of nonautonomous dynamical systems and estimations of their dimension, Math. Notes 51 (1992), no. 6, 622–624.CrossRefMathSciNetGoogle Scholar
  124. 124.
    M. I. Vishik and V. V. Chepyzhov, Attractors of periodic processes and estimates of their dimensions, Math. Notes 57 (1995), no. 2, 127–140.MATHCrossRefMathSciNetGoogle Scholar
  125. 125.
    M. I. Vishik and V. V. Chepyzhov, Kolmogorov ε -entropy estimates for the uniform attractors of nonautonomous reaction-diffusion systems, Sb. Math. 189 (1998), no. 2, 235–263.CrossRefMathSciNetGoogle Scholar
  126. 126.
    M. I. Vishik and V. V. Chepyzhov, Averaging of trajectory attractors of evolution equations with rapidly oscillating terms, Sb. Math. 192 (2001), no. 1, 11-47.MATHCrossRefMathSciNetGoogle Scholar
  127. 127.
    M. I. Vishik and V. V. Chepyzhov, Kolmogorov epsilon-entropy in the problems on global attractors for evolution equations of mathematical physics, Probl. Inf. Transm. 39 (2003), no. 1, 2-20.MATHCrossRefMathSciNetGoogle Scholar
  128. 128.
    M. I. Vishik and V. V. Chepyzhov, Approximation of trajectories lying on a global attractor of a hyperbolic equation with exterior force rapidly oscillating in time, Sb. Math. 194 (2003), no. 9, 1273–1300.MATHCrossRefMathSciNetGoogle Scholar
  129. 129.
    M. I. Vishik and V. V. Chepyzhov, Nonautonomous Ginzburg–Landau equation and its attractors, Sb. Math. 196 (2005), no. 6, 17–42.CrossRefMathSciNetGoogle Scholar
  130. 130.
    M. I. Vishik and V. V. Chepyzhov, Attractors of dissipative hyperbolic equation with singularly oscillating external forces, Math. Notes 79 (2006), no. 3, 483-504.Google Scholar
  131. 131.
    M. I. Vishik and B. Fiedler, Quantitative homogenization of global attractors for hyperbolic wave equations with rapidly oscillating terms, Russian Math. Surv. 57 (2002), no. 4, 709–728.MATHCrossRefMathSciNetGoogle Scholar
  132. 132.
    M. I. Vishik and A. V. Fursikov, Mathematical Problems of Statistical Hydromechanics, Kluwer Acad. Publ., Dortrecht–Boston–London, 1988.MATHGoogle Scholar
  133. 133.
    M. I. Vishik and S. V. Zelik, The trajectory attractor of a nonlinear elliptic system in a cylindrical domain, Sb. Math. 187 (1996), no. 12, 1755–1789.MATHCrossRefMathSciNetGoogle Scholar
  134. 134.
    M. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Commun. Math. Phys. 87 (1983), 567–576.MATHCrossRefMathSciNetGoogle Scholar
  135. 135.
    M. Ziane, Optimal bounds on the dimension of the attractor of the Navier–Stokes equations, Physica D 105 (1997), 1–19.MATHCrossRefMathSciNetGoogle Scholar
  136. 136.
    S. V. Zelik, The attractor for a nonlinear reaction-diffusion system with a supercritical nonlinearity and it’s dimension, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. 24 (2000), 1–25.MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Vladimir Chepyzhov
    • 1
  • Mark Vishik
    • 1
  1. 1.Institute for Information Transmission Problems RASMoscowRussia

Personalised recommendations