Nonlinear Dynamics of a System of Particle-Like Wavepackets

  • Anatoli Babin
  • Alexander Figotin
Part of the International Mathematical Series book series (IMAT, volume 6)


Group Velocity Harmonic Generation Nonlinear Evolution Superposition Principle Quadratic Nonlinearity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Babin and A. Figotin, Nonlinear Photonic Crystals: I. Quadratic nonlinearity, Waves Random Media 11 (2001), no. 2, R31-R102.MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    A. Babin and A. Figotin, Nonlinear Photonic Crystals: II. Interaction classification for quadratic nonlinearities, Waves Random Media 12 (2002), no. 4, R25-R52.MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    A. Babin and A. Figotin, Nonlinear Photonic Crystals: III. Cubic Nonlinearity, Waves Random Media 13 (2003), no. 4, R41-R69.MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    A. Babin and A. Figotin, Nonlinear Maxwell Equations in Inhomogenious Media, Commun. Math. Phys. 241 (2003), 519-581.MATHMathSciNetGoogle Scholar
  5. 5.
    A. Babin and A. Figotin, Polylinear spectral decomposition for nonlinear Maxwell equations, In: Partial Differential Equations (M. S. Agranovich and M.A. Shubin, Eds.), Am. Math. Soc. Translations. Series 2 206, 2002, pp. 1-28.MathSciNetGoogle Scholar
  6. 6.
    A. Babin and A. Figotin, Nonlinear Photonic Crystals: IV Nonlinear Schrödinger Equation Regime, Waves Random Complex Media 15 (2005), no. 2, 145-228.CrossRefMathSciNetGoogle Scholar
  7. 7.
    A. Babin and A. Figotin, Wavepacket Preservation under Nonlinear Evolution, arXiv:math.AP/0607723.Google Scholar
  8. 8.
    A. Babin and A. Figotin, Linear superposition in nonlinear wave dynamics, Reviews Math. Phys. 18 (2006), no. 9, 971-1053.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    D. Bambusi, Birkhoff normal form for some nonlinear PDEs, Commun. Math. Phys. 234 (2003), no. 2, 253-285.MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    W. Ben Youssef and D. Lannes, The long wave limit for a general class of 2D quasilinear hyperbolic problems, Commun. Partial Differ. Equations 27 (2002), no. 5-6, 979-1020.Google Scholar
  11. 11.
    N. N. Bogoliubov and Y. A. Mitropolsky, Asymptotic Methods in the Theory of Nonlinear Oscillations, Hindustan Publ. Corp. Delhi, 1961.Google Scholar
  12. 12.
    J. L. Bona, T. Colin, and D. Lannes, Long wave approximations for water waves, Arch. Ration. Mech. Anal. 178 (2005), no. 3, 373–410.MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    J. Bourgain, Global Solutions of Nonlinear Schrödinger Equations, Am. Math. Soc., Providence, RI, 1999.Google Scholar
  14. 14.
    T. Cazenave, Semilinear Schrödinger Equations, Am. Math. Soc., Providence, RI, 2003.Google Scholar
  15. 15.
    T. Colin, Rigorous derivation of the nonlinear Schrödinger equation and Davey-Stewartson systems from quadratic hyperbolic systems, Asymp. Anal. 31 (2002), no. 1, 69–91.MATHMathSciNetGoogle Scholar
  16. 16.
    T. Colin and D. Lannes, Justification of and long-wave correction to Davey-Stewartson systems from quadratic hyperbolic systems., Discr. Cont. Dyn. Syst. 11 (2004), no. 1, 83–100.MATHMathSciNetGoogle Scholar
  17. 17.
    W. Craig and M. D. Groves, Normal forms for wave motion in fluid interfaces, Wave Motion 31 (2000), no. 1, 21–41.CrossRefMathSciNetGoogle Scholar
  18. 18.
    W. Craig, C. Sulem, and P.-L. Sulem, Nonlinear modulation of gravity waves: a rigorous approach, Nonlinearity 5 (1992), no. 2, 497–522.MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    T. Gallay and C. E. Wayne, Invariant manifolds and the long-time asymptotics of the Navier–Stokes and vorticity equations on R2, Arch. Ration. Mech. Anal. 163 (2002), no. 3, 209–258.CrossRefMathSciNetGoogle Scholar
  20. 20.
    Zh. Gang and I. M. Zhou, On soliton dynamics in nonlinear Schrödinger equations, Geom. Funct. Anal. 16 (2006), no. 6, 1377–1390.MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Zh. Gang and I. M. Zhou, Relaxation of Solitons in Nonlinear Schrodinger Equations with potential, arXiv:math-ph/0603060v1Google Scholar
  22. 22.
    J. Giannoulis and A. Mielke, The nonlinear Schrödinger equation as a macroscopic limit for an oscillator chain with cubic nonlinearities, Nonlinearity 17 (2004), no. 2, 551–565.MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    G. Iooss and E. Lombardi, Polynomial normal forms with exponentially small remainder for analytic vector fields. J. Differ. Equations 212 (2005), no. 1, 1–61.MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    J.-L. Joly, G. Metivier, and J. Rauch, Diffractive nonlinear geometric optics with rectification, Indiana Univ. Math. J. 47 (1998), no. 4, 1167–1241.MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    B. L. G. Jonsoon, J. Fröhlich, S. Gustafson, and I. M. Sigal, Long time motion of NLS solitary waves in aconfining potential, Ann. Henri Poincaré 7 (2006), no. 4, 621–660.CrossRefGoogle Scholar
  26. 26.
    L. A. Kalyakin, Long-wave asymptotics. Integrable equations as the asymptotic limit of nonlinear systems, Russian Math. Surv. 44 (1989), no. 1, 3–42.MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    L. A. Kalyakin, Asymptotic decay of a one-dimensional wave packet in a nonlinear dispersion medium, Math. USSR Sb. Surveys 60 (2) (1988) 457–483.CrossRefMathSciNetGoogle Scholar
  28. 28.
    T. Kato, Perturbation Theory for Linear Operators, Springer, 1980.Google Scholar
  29. 29.
    S. B. Kuksin, Fifteen years of KAM for PDE, In: Geometry, Topology, and Mathematical Physics, Am. Math. Soc., Providence, RI, 2004, pp. 237–258.Google Scholar
  30. 30.
    P. Kirrmann, G. Schneider, and A. Mielke, The validity of modulation equations for extended systems with cubic nonlinearities, Proc. Roy. Soc. Edinburgh Sect. A 122 (1992), no. 1-2, 85–91.MathSciNetMATHGoogle Scholar
  31. 31.
    J. Krieger and W. Schlag, Stable manifolds for all monic supercritical focusing nonlinear Schrödinger equations in one dimension, J. Am. Math. Soc. 19 (2006), no. 4, 815–920 (electronic).MATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    V. P. Maslov, Non-standard characteristics in asymptotic problems, Russian Math. Surv. 38 (1983), 6, 1–42.MATHCrossRefGoogle Scholar
  33. 33.
    A. Mielke, G. Schneider, and A. Ziegra, Comparison of inertial manifolds and application to modulated systems, Math. Nachr. 214 (2000), 53–69.MATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    R. D. Pierce and C. E. Wayne, On the validity of mean-field amplitude equations for counterpropagating wavetrains, Nonlinearity 8 (1995), no. 5, 769–779.MATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    W. Schlag, Spectral theory and nonlinear partial differential equations: a survey, Discr. Cont. Dyn. Syst. 15 (2006), no. 3, 703–723.MATHMathSciNetGoogle Scholar
  36. 36.
    G. Schneider, Justification of modulation equations for hyperbolic systems via normal forms, NoDEA, Nonlinear Differ. Equ. Appl. 5 (1998), no. 1, 69–82.MATHCrossRefGoogle Scholar
  37. 37.
    G. Schneider, Justification and failure of the nonlinear Schrödinger equation in case of non-trivial quadratic resonances, J. Differ. Equations 216 (2005), no. 2, 354–386.MATHCrossRefGoogle Scholar
  38. 38.
    G. Schneider and H. Uecker, Existence and stability of modulating pulse solutions in Maxwell’s equations describing nonlinear optics, Z. Angew. Math. Phys. 54 (2003), no. 4, 677–712.MATHMathSciNetCrossRefGoogle Scholar
  39. 39.
    C. Sulem and P.-L. Sulem, The Nonlinear Schrodinger Equation, Springer, 1999.Google Scholar
  40. 40.
    A. Soffer and M. I. Weinstein, Resonances, radiation damping and instability in Hamiltonian nonlinear wave equations, Invent. Math. 136 (1999), no. 1, 9–74.CrossRefMathSciNetGoogle Scholar
  41. 41.
    G. Whitham, Linear and Nonlinear Waves, John Wiley and Sons, 1974.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Anatoli Babin
    • 1
  • Alexander Figotin
    • 1
  1. 1.University of California at IrvineUSA

Personalised recommendations