Advertisement

Analyticity of Periodic Solutions of the 2D Boussinesq System

  • Maxim Arnold
Part of the International Mathematical Series book series (IMAT, volume 6)

Keywords

Stokes Equation Global Existence Boussinesq Equation Global Regularity Require Assertion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. D. Arnold, Yu. Yu. Bakhtin, and E. I. Dinaburg, Regularity of solutions to vorticity Navier–Stokes system on2, Commun. Math. Phys. 258 (2005), no. 2, 339–348.Google Scholar
  2. 2.
    D. Chae, Global regularity for the 2D Boussinesq equations with partial viscosity terms, Adv. Math. 203 (2006), no. 2, 497-513.MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    P. Constantin and C. Foias, Navier–Stokes Equations, University of Chicago Press, Chicago, 1988.MATHGoogle Scholar
  4. 4.
    P. Constantin and C. Fefferman, Directions of vorticity and the problem of global regularity for the Navier–Stokes equations, Indiana Univ. Math. J. 42 (1993), no. 3, 775–789.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    W. E and C-W. Shu, Small-scale structures in Boussinesq convection, Phys. Fluids 6 (1994), no. 1, 49–58.Google Scholar
  6. 6.
    C. Foias and R. Temam, Gevrey class regularity for the solutions of the Navier–Stokes equations, J. Funct. Anal. 87 (1989), no. 2, 359–369.MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Y. Li, Global regularity for the viscous Boussinesq equations, Math. Methods Appl. Sci. 27 (2004), no. 3, 363–369.MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    J. C. Mattingly and Ya. G. Sinai, An elementary proof of the existence and uniqueness theorem for the Navier–Stokes equations, Commun. Contemp. Math. 1 (1999), no. 4, 497–516.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Ya. G. Sinai, On local and global existence and uniqueness of solutions of the 3D-Navier–Stokes systems on3, In: Perspectives in Analysis. Essays in Honor of Lennart Carleson’s 75th birthday. Proc. Conf., Stockholm, Sweden, May 26–28, 2003. (M. Benedicks, et al. Eds.), Springer, Berlin, 2005, pp. 269–281.Google Scholar
  10. 10.
    Ya. G. Sinai, Power series for solutions of the 3D Navier–Stokes system on3. J. Stat. Phys. 121 (2005), no. 5-6, 779-803.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Maxim Arnold
    • 1
  1. 1.Institute of the Earthquake Prediction Theory RASMoscowRussia

Personalised recommendations