Solid Controllability in Fluid Dynamics

  • Andrey Agrachev
  • Andrey Sarychev
Part of the International Mathematical Series book series (IMAT, volume 6)


Stokes Equation Euler Equation Spherical Harmonic Poisson Bracket Riemannian Metrics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. A. Agrachev and R. V. Gamkrelidze, Exponential representation of flows and chronological calculus, Math. USSR Sb. 35 (1979), 727–785.MATHCrossRefGoogle Scholar
  2. 2.
    A. A. Agrachev and Yu. L. Sachkov, Lectures on Geometric Control Theory, Springer-Verlag, 2004.Google Scholar
  3. 3.
    A. A. Agrachev and A. V. Sarychev, On reduction of smooth system linear in control, Math. USSR Sb. 58 (1987), 15–30.MATHCrossRefGoogle Scholar
  4. 4.
    A. A. Agrachev and A. V. Sarychev, Navier–Stokes equation controlled by degenerate forcing: controllability of finite-dimensional approximations, In: Proc. Intern. Conf. “Physics and Control 2003, St.-Petersburg, Russia, August 20-22, 2003,” CD ROM, 1346-1351.Google Scholar
  5. 5.
    A. A. Agrachev and A. V. Sarychev, Controllability of the Navier–Stokes equation by few low modes forcing, Dokl. Math. Sci. 69 (2004), no. 1/2, 112–115.MATHGoogle Scholar
  6. 6.
    A. A. Agrachev and A. V. Sarychev, Navier–Stokes equations: Controllability by means of low modes forcing, J. Math. Fluid Mech. 7 (2005), 108–152.MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    A. A. Agrachev and A. V. Sarychev, Controllability of 2D Euler and Navier–Stokes equations by degenerate forcing, Commun. Math. Phys. 265 (2006), 673–697.MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    V. I. Arnold, Mathematical Methods of Classical Mechanics, Springer-Verlag, 1997.Google Scholar
  9. 9.
    V. I. Arnold, Lectures on Partial Differential Equations, Springer-Verlag, 2004.Google Scholar
  10. 10.
    V. I. Arnold and B. M. Khesin, Topological Methods in Hydrodynamics, Springer-Verlag, New-York, 1998.MATHGoogle Scholar
  11. 11.
    J.-M. Coron, Return method: some applications to flow control, In: Mathematical Control Theory, ICTP Lecture Notes Series Vol. 8. Parts 1–2, 2002.Google Scholar
  12. 12.
    B. Dubrovin, S. Novikov, and A. Fomenko, Modern Geometry – Methods and Applications. Part I, Springer-Verlag, New York, 1984.MATHGoogle Scholar
  13. 13.
    W. E and J. C. Mattingly, Ergodicity for the Navier–Stokes equation with degenerate random forcing: finite-dimensional approximation, Comm. Pure Appl. Math. 54 (2001), no. 11, 1386–1402.CrossRefMathSciNetGoogle Scholar
  14. 14.
    A. V. Fursikov, Optimal Control of Distributed Systems. Theory and Applications, Am. Math. Soc., Providence, 2000.Google Scholar
  15. 15.
    A. V. Fursikov and O. Yu. Imanuilov, Exact controllability of the Navier–Stokes and Boussinesq equations, Russian Math. Surv. 54 (1999), no. 3, 565–618.MATHCrossRefGoogle Scholar
  16. 16.
    R. V. Gamkrelidze, On some extremal problems in the theory of differential equations with applications to the theory of optimal control, J. Soc. Ind. Appl. Math. Ser. A: Control 3 (1965), 106–128.MathSciNetGoogle Scholar
  17. 17.
    R. V. Gamkrelidze, Principles of Optimal Control Theory, Plenum Press, New York, 1978.MATHGoogle Scholar
  18. 18.
    V. Jurdjevic, Geometric Control Theory, Cambridge University Press, Cambridge, 1997.MATHGoogle Scholar
  19. 19.
    T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, 1966.Google Scholar
  20. 20.
    E. J. McShane, Generalized curves, Duke Math. J. 6 (1940), 513–536.MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    S. Rodrigues, Navier–Stokes equation on the rectangle: controllability by means of low mode forcing, J. Dyn. Control Syst. 12 (2006), 517–562.MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    S. Rodrigues, Navier–Stokes Equation on a Plane Bounded Domain: Continuity Properties for Controllability, ISTE, Hermes Publ., 2007. [To appear]Google Scholar
  23. 23.
    S. Rodrigues, Controlled PDE on Compact Riemannian Manifolds: Controllability Issues, In: Proc. Workshop Mathematical Control Theory and Finance, Lisbon, Portugal, 2007. [Submitted]Google Scholar
  24. 24.
    S. Rodrigues, 2D Navier-Stokes equation: A saturating set for the half-sphere. [Private communication]Google Scholar
  25. 25.
    M. Romito, Ergodicity of finite-dimensional approximations of the 3D Navier–Stokes equations forced by a degenerate noise, J. Stat. Phys. 114 (2004), no. 1-2, 155-177.MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    A. Shirikyan, Approximate controllability of three-dimensional Navier–Stokes equations, Commun. Math. Phys. 266 (2006), no. 1, 123–151.MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    A. Shirikyan, Exact controllability in projections for three-dimensional Navier–Stokes equations, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 24 (2007), 521-537.Google Scholar
  28. 28.
    L. C. Young, Generalized curves and the existence of an attained absolute minimum in the calculus of variations, Compt. Rend. Soc. Sci. Lett. Varsovie, cl. III 30 (1937), 212–234.MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Andrey Agrachev
    • 1
    • 2
  • Andrey Sarychev
    • 3
  1. 1.International School for Advanced StudiesTriesteItaly
  2. 2.V. A. Steklov Mathematical Institute RASMoscowRussia
  3. 3.University of FlorenceFlorenceItaly

Personalised recommendations