Instrumentation and Control in SSF

  • Wilerson Sturm
  • Dario Eduardo Amaral Dergint
  • Carlos Ricardo Soccol


This chapter has the purpose of explaining some of the Instrumentation and Control concepts and their application in solid-state fermentation. When dealing with instrumentation, it is important to keep in mind that it could be divided in four parts: Sensors, Actuators, Control, and Communication Network. Some of the newest technologies appear first in industrial sensors and controlling systems, indeed some of them are specific necessities developed. Industrial automation and control demands large amounts of investment, thus these devices suppliers do not have doubts about using the more updated technology, even if costs are high. However, the usual sensors and control devices are more and more cost effective due to electronic industry development and the demand and supply behavior.


Pulse Width Modulation Flow Sensor Programmable Logical Controller Function Block Guarantee Time Slot 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Appendix D, 2002, PID Function Block, Rosemount Model 3244MV MultiVariable Temperature Transmitter with Foundation Fieldbus, FIELDBUS-FBUS_34A, Rosemount,, accessed on 20/11/2006.
  2. Axelsom , 2005, Jan. Usb Complete, pp 196–198, Madison: Lakeview Research LLC.Google Scholar
  3. Betlem BB & Roffel B, 2004, Advanced Practical Process Control, p 309, Springer: New York.Google Scholar
  4. Birol G, Undey C & Cinar A, 2002, A Modular Simulation Package for Fed-Batch Frmentation: Penicillin Production, Computers and Chemical Engineering, 26, 1553–1565.CrossRefGoogle Scholar
  5. Bradley DA, 1995, Power Electronics, pp 39–42, CRC Press: London.Google Scholar
  6. Brown PR, Giddings JC & Gruchka E, 1989, Advances in Chromatography, p 73, Marcel Dekker: New York.Google Scholar
  7. Bryce CFA & Mansi EM, 1999, Fermentation Microbiology and Biotechnology, pp 203–236, Taylor & Francis: London.Google Scholar
  8. Cheremisinoff NP, 1988, Flow Measurement for Engineers and Scientists, pp 311–312, Marcel Dekker: New York.Google Scholar
  9. Christen P, Véronique BM & Orliac O, 2003, Sensors and measurements in solid-state fermentation: a review, Process Biochemistry, 38, 881–896.CrossRefGoogle Scholar
  10. Dergint DEA, 1990, Urn Barramento de Campo para Automaçao da Garantia da Qualidade da Producao; 1990, Dissertation; CEFET-PR, Curitiba, Brasil.Google Scholar
  11. Dorta B, Bosch A, Areas I & Ertola R, 1994, Water balance in solid-state fermentation without forced aeration, Enzyme and Microbial Technology, 16, 562–565.CrossRefGoogle Scholar
  12. EN_50170, 1996, General Purpose Field Communication System, European Standard, CENELEC.Google Scholar
  13. Evrendilek C, Wilhelmsen D, Gezer E & Ince AN, 1997, Planning and Architectural Design of Modern Command Control Communications and Information Systems, pp 106–107, Springer: Massachusetts.Google Scholar
  14. Gervais P, 1989, A new sensor allowing continuous water activity measurement of submerged or solid substrate fermentations, Biotechnology and Bioengineering, 33, 266–271.CrossRefGoogle Scholar
  15. Goodman G, 2006, Puffin Projects Lead Open Source Parade, 23 April 2001., accessed on 17/11/2006.
  16. Gorodeckij VI & Popyack L (eds), 2003, Computer Network Security, p 171, Springer: New York.Google Scholar
  17. GPIB Tutorial, 2006, TransEra Corporation‐s,, accessed on 13/11/2006.
  18. Herman SL & Alerich WN, 1998, Industrial Motor Control, p 143, Thomson Delmar Learning: New York.Google Scholar
  19. Ibrahim D, 2002, Microcontroller-Based Temperature Monitoring and Control, pp 203–204, Newnes: Oxford.Google Scholar
  20. IEEE — 1984, International Standard 802.4: IEEE standards for local area networks: token-passing buss access method and physical layer specifications.Google Scholar
  21. Janocha H, 2004, Actuators: Basics and Applications, pp 167–170, Springer: New York.Google Scholar
  22. Jardine FM & McCallum RI, 1994, Engineering and Health in Compressed Air Work, pp 334–335, Spon Press: London.Google Scholar
  23. Leblanc C, 2000, The Future of Industrial Networking and Connectivity; Dedicated Systems; 2000 Ql,, accessed on 11/11/2006.
  24. Lewis RW, 2001, Modelling Control Systems, IET: London.Google Scholar
  25. Liptak BG, 1993, Flow Measurement, CRC Press: Pennsylvania.Google Scholar
  26. Liptak BG, 1994, Analytical Instrumentation, CRC Press: Pennsylvania.Google Scholar
  27. McCombs DM, 1999, Detecting the World, CMP Books: Berkeley.Google Scholar
  28. Montague G (ed), 1997, Monitoring & Control of Fermenters, pp 89–92, Institution of Chemical Engineers (IChemE): London.Google Scholar
  29. Myrvoll F (ed), 2003, Field Measurements in Geomechanics, Taylor Francis: Lisse (UK).Google Scholar
  30. National Semiconductors Corporation, 2006,. LM35 Data Sheet,, accessed 10/11/2006.
  31. Omstead DR, 1990, Computer Control of Fermentation Processes,CRC Press: Boca Raton.Google Scholar
  32. Pandey A, Soccol CR, Rodriguez-Leon JA & Nigam P, 2001, Solid-state Fermentation in Biotechnology: Fundamentals and Applications, Asiatech Publishers, Inc. New Delhi, India.Google Scholar
  33. Pandey A (ed), 2004, Concise Encyclopedia of Bioresource Technology, Haworth Press: New York.Google Scholar
  34. Rana SP & Taneja SK, 1988, A Distributed Architecture for Automated Manufacturing, International Journal of Advanced Manufacturing Technology, 3, 5.Google Scholar
  35. Rexford KB & Giuliani PR, 2004, Electrical Control for Machines, Thomson Delmar Learning: New York.Google Scholar
  36. Saleh JM, 2002, Fluid Flow Handbook, McGraw-Hill Professional: New York.Google Scholar
  37. Scheper T & Berovic M, 2000, New Products and New Areas of Bioprocess Engineering, Springer: Berlin.Google Scholar
  38. Shaw IS, 1998, Fuzzy Control of Industrial Systems, Springer: Massachusetts.Google Scholar
  39. SMAR, 2001, Fieldbus Tutorial a Foundation: fieldbus technology overview,, accessed on 15/11/2006.
  40. Smith JE, 2004, Biotechnology. Cambridge University Press: Cambridge.Google Scholar
  41. Soloman S, 1998, Sensors Handbook, McGraw-Hill Professional: New York.Google Scholar
  42. Strauss C, 2003, Practical Electrical Network Automation and Communication Systems, Newnes: Burlington.Google Scholar
  43. Sturm W, 2004, Sensores Industriais: Conceitos Teoricos e Apliçaqões Praticas, Papel Virtual Editora: Rio de Janeiro.Google Scholar
  44. TEI Controls Inc. “4-20 mA Description”, E.U.A,, accessed on 20/11/2006.
  45. Thomesse JP, 1998, A Review of the Fieldbuses, Annual Reviews in Control, 22, 35–45CrossRefGoogle Scholar
  46. Tsao GT & Brainard AP, 1999, Recent Progress in Bioconversion of Lignocellulosics, Springer: New York.Google Scholar
  47. USB 2.0 Specification; Universal Serial Bus,, accessed on 13/11/2006.
  48. Valkenburgh AV, 1993, Basic Electricity, Thomson Delmar Learning: Indianapolis.Google Scholar
  49. Wheeler A, 2006, ZigBee Wireless Networks for Industrial Systems — White Paper, Jun-2006., accessed on 13/11/2006.
  50. Wong H, 2006, Overview of Serial Communications; Web Presentation, National Semiconductor,,4706,0_34_,00/html, accessed on 13/11/2006.
  51. Wright E, Park J & Mackay S, 2003, Practical Data Communications for Instrumentation and Control, Newnes: Oxford.Google Scholar
  52. Yacoub M & Yang GZ, 2006, Body Sensor Networks, Springer: London.Google Scholar
  53. Yacynych AM (ed), 1990, Sensors in Bioprocess Control, Marcel Dekker: New York.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Wilerson Sturm
    • 1
  • Dario Eduardo Amaral Dergint
    • 2
  • Carlos Ricardo Soccol
    • 1
  1. 1.Bioprocess Engineering and Biotechnology DivisionFederal University of ParanáCuritiba-PRBrazil
  2. 2.Departamento de EletrônicaUniversidade Tecnológica Federal do ParanaCuritiba-PRBrazil

Personalised recommendations