Skip to main content

Abstract

It is well known that the solid-state fermentation (SSF) is a new technology with which antibiotics, enzymes, fine chemicals can be obtained by new bioprocesses with improved efficiency (Giovannozzi-Sermanni & Porri 1989; Pandey et al., 2000) if compared to the classical submerged fermentations. SSF processes can be defined as “the growth of microorganisms, mainly fungi, on moist solid materials in the absence of free-flowing water”(Cannel & Moo-Young 1980). In the last few decades SSF has grown quickly in interest and importance and has been used for the production of antibiotics, alkaloids, aroma compounds, plant growth factors, enzymes, biofuel, and also for the bioremediation of polluting compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • Acuna-Arguelles ME, Gutierrez-Rojas M, Viniegra-González G & Favela-Torres E, 1995, Production and properties of three pectinolytic activities produced by Aspergillus niger in submerged and solid-state fermentation, Applied Microbiology and Biotechnology, 43, 808–814.

    Article  CAS  Google Scholar 

  • Aguilar CN, Augur C, Favela-Torres E & Viniegra-González G, 2001, Production of tannase by Aspergillus niger Aa-20 in submerged and solid-state fermentation: influence of glucose and tannic acid, Journal of Industrial Microbiol Biotech, 26, 296–302.

    Article  CAS  Google Scholar 

  • Akhtar M, Attridge MC, Myers GC, Kirk TK & Blanchette RA, 1992, Biomechanical pulping of loblolly pine chips with different strains of the white-rot fungus Ceriporiopsis subvermispora, Tappi Journal, 105–109.

    Google Scholar 

  • Akhtar M, Attridge MC, Myers GC & Blanchette RA, 1993, Biomechanical pulping of loblolly pine chips with selected white-rot fungi, Holzforschung, 47, 36–40.

    Article  CAS  Google Scholar 

  • Ashley VM, Mitchell D A & Howes T, 1999, Evaluating strategies for overcoming overheating problems during solid-state fermentation in packed bed bioreactors, Biochemical Engineering Journal, 3, 141–150.

    Article  CAS  Google Scholar 

  • Bellon-Maurel V, Orliac O & Christen P, 2003, Sensors and measurements in solid state fermentation: a review, Process Biochemistry, 38, 881–896.

    Article  CAS  Google Scholar 

  • Cannel E & Moo-Young M, 1980, Solid state fermentation systems, Process Biochemisrty, 15,2–7.

    CAS  Google Scholar 

  • Crestini C, Sermanni GG & Argyropoulos DS, 1998, Structural modifications induced during biodégradation of wheat lignin by Lentinula edodes, Bioorganic & medicinal Chemistry, 6,967–973.

    Article  CAS  Google Scholar 

  • Deschamps F & Huet MC, 1985, Xylanase production in solid-state fermentation: a study of its properties, Applied Microbiology and Biotechnology, 22, 177–180.

    Article  CAS  Google Scholar 

  • Durand A, 2003, Bioreactor designs for solid state fermentation, Biochemical Engineering Journal, 13, 113–125.

    Article  CAS  Google Scholar 

  • Durand A & Chereau D, 1988, A new pilot reactor for solid-state fermentation: Application to the protein enrichment of sugar beet pulp, Biotechnology and Bioengeneering, 31,476–486.

    Article  CAS  Google Scholar 

  • Durand A, Renaud R, Maratray J, Almanza S & Diez M, 1996, INRA-Dijon reactors for solid-state fermentations: design and applications, Journal of Industrial Scientific Research, 55, 317–332.

    CAS  Google Scholar 

  • Filer K, 2001, The newest old way to make enzymes, Feed Mix, 9, 27–29.

    Google Scholar 

  • Fung CJ & Mitchell DA, 1995, Baffles increase performance of solid state fermentation in rotating drums, Biotechnology Techniques, 9, 295–298.

    Article  CAS  Google Scholar 

  • Gervais P & Molin P, 2003, The role of water in solid-state fermentation, Biochemical Engineering Journal, 13, 85–101.

    Article  CAS  Google Scholar 

  • Giovannozzi-Sermanni G, 1959, Un dispositivo atto allo studio dei processi trasformativi dei materiali solidi, Attualità di laboratorio, AnnoV No. 1.

    Google Scholar 

  • Giovannozzi-Sermanni G, Basile G & Luna M, 1978, Biochemical changes occurring in the compost during growth and reproduction of Pleurotus Ostreatus and Agaricus Bisporus, Mushroom Science X (Part II), Proceeding of the Tenth International Congress on the Science and Cultivation of Edile Fungi, France.

    Google Scholar 

  • Giovannozzi-Sermanni G, D’Annibale A, Perani C, Porri A, Pastina F, Minelli V, Vitale NS & Gelsomino A, 1994, Characteristics of paper handsheets after combined biological pretreatments and conventional pulping of wheat straw, Tappi Journal, 11, 151–157.

    Google Scholar 

  • Giovannozzi-Sermanni G, D’Annibale A, Porri A & Perani C, 1992, Depolymerization of water soluble lignocellulose by mycelium, culture broth and phenol-oxidases of Lentinus edodes, Agroindustry Hi Tech, 3,(6), 39–42.

    Google Scholar 

  • Giovannozzi-Sermanni G & Luna M, 1981, Laccase activity of Agaricus Bisporus and Boletus Ostreatus, Mushroom Science XI, Proceeding of the Eleventh International Scientific Congress on the Cultivation of Edile Fungi, Australia.

    Google Scholar 

  • Giovannozzi-Sermanni G, Perani C & Porri A, 1990, Biodelignification and metabolites production in different solid-state fermentation condition, Biotechnology in pulp and paper manufacture, Ed. Chang HM & Kirk TK, Butterworth Heinemann, 47–55.

    Google Scholar 

  • Giovannozzi-Sermanni G & Porri A, 1989, The potentiality of solid-state biotransformation of lignocellulosic materials, Chimicaoggi, March, 15–19.

    Google Scholar 

  • Gowthaman MK, Ghildyal NP, Raghava Rao KSMS & Karanth NG, 1993, Interaction of transport resistances with biochemical reaction in packed bed solid state fermenters: the effect of gaseous concentration gradients, Journal of Chemical Technology and Biotechnology, 56, 233–239.

    CAS  Google Scholar 

  • Grant GA, Han YW & Anderson A W, 1978, Pilot-scale semisolid fermentation of straw, Applied and Environmental Microbiology, 35(3), 549–553.

    CAS  Google Scholar 

  • Hölker U, Höfer M & Lenz J, 2004, Biotechnological advantages of laboratory-scale solid-state fermentation with fungi, Applied Microbiology and Biotechnology, 64,175–186.

    Article  CAS  Google Scholar 

  • Hongzhang C, Fujian X, Zhonghou T & Zuohu L, 2002, A novel industrial-level reactor with two dynamic changes of air for solid-state fermentation, Journal of Bioscience and Bioengineering, 93(2), 211–214.

    Article  Google Scholar 

  • Hsu Y & Wu W, 2002, A novel approach for scaling-up a fermentation system, Biochemical Engineering Journal, 11, 123–130.

    Article  CAS  Google Scholar 

  • Kalogeris E, Fountoukides G, Kekos D & Macris BJ, 1999, Design of a solid-state bioreactor for thermophilic microorganisms, Bioresourse Technology, 67, 313–315.

    Article  CAS  Google Scholar 

  • Lenz J, Höfer M, Krasenbrink J-B & Hölker U, 2004, A survey of computational and physical methods applied to solid-state fermentation, Applied Microbiology and Biotechnology, 65, 9–17.

    Article  CAS  Google Scholar 

  • Marsh AJ, Mitchell DA, Stuart DM & Howes T, 1998, O2 uptake during solid-state fermentation in a rotating drum bioreactor, Biotechnology Letters, 20(6), 607–611.

    Article  CAS  Google Scholar 

  • Martinez AT, Camarero S, Guillen F, Gutierrez A, Munoz C, Varela E, Martinez MJ, Barrera JM & Ruel K, 1994, Progress in biopulpihg of non-woody materials, Chemical, enzymatic and ultrasctructural aspects of wheat straw delignification with lignolytic fungi from the genus Pleurotus, FEMS Microbiological Reviews, 13 (2-3), 265–274.

    Article  CAS  Google Scholar 

  • Medeiros ABP, Pandey A, Christen P, Fontoura PSG, de Freitas RJS & Soccol CR, 2001, Aroma compounds produced by Kluyveromyces marxianus in solid state fermentation on a packed bed column bioreactor, World Journal of Microbiology & Biotechnology, 17, 767–771.

    Article  CAS  Google Scholar 

  • Mitchell DA, Krieger N, Stuart DM & Pandey A, 2000, New developments in solid-state fermentation II. Rational approaches to the design, operation and scale-up of bioreactors, Process Biochemistry, 35, 1211–1225.

    Article  CAS  Google Scholar 

  • Nagel F-JJI, Tramper J, Bakker MSN & Rinzema A, 2001, Temperature control in a continuous mixed bioreactor for solid-state fermentation, Biotechnology and Bioengineering, 72(2), 219–230.

    Article  CAS  Google Scholar 

  • Pandey A, 2003, Solid-state fermentation, Biochemical Engineering Journal, 13, 81–84.

    Article  CAS  Google Scholar 

  • Pandey A, Soccol CR & Mitchell D, 2000, New developments in solid-state fermentation: I-bioprocesses and products, Process Biochemistry, 35, 1153–1169.

    Article  CAS  Google Scholar 

  • Pandey A, Soccol CR, Rodriguez-Leon JA & Nigam P, 2001, Solid-state Fermentation in Biotechnology: Fundamentals and Applications, Asiatech, New Delhi.

    Google Scholar 

  • Pandey A, Selvakumar P, Soccol CR & Nigam P, 1999, Solid-state fermentation for the production of industrial enzymes, Current Science, 77(1), 149–162.

    CAS  Google Scholar 

  • Pérez-Guerra N, Torrado-Agrasar A, Lopez-Macias C & Pastrana L, 2003, Main characteristics and applications of solid substrate fermentation, Electronic Journal of Environmental, Agricultural and Food Chemistry, 2(3), 343–350.

    Google Scholar 

  • Pommier J-C, Fuentes J-L & Goma G, 1989, Tappi Journal, 72(6), 187–191.

    CAS  Google Scholar 

  • Raghavarao KSMS, Ranganatham TV & Karanth NG, 2003, Some engineering aspects of solid-state fermentation, Biochemical Engineering Journal, 13, 127–135.

    Article  CAS  Google Scholar 

  • Raimbault M, 1998, General and microbiological aspects of solid substrate fermentation, Electronic Journal of Biotechnology, 1(3), 15.

    Google Scholar 

  • Rivela I, Rodrígez Couto S & Sanromán A, 2000, Extracellular ligninolytic enzyme production by Phanerochaete chrysosporium in a new solid-state bioreactor, Biotechnology Letters, 22, 1443–1447.

    Article  CAS  Google Scholar 

  • Robinson T & Nigam P, 2003, Bioreactor design for protein enrichment of agricultural residues by solid-state fermentation, Biochemical Engineering Journal, 13, 197–203.

    Article  CAS  Google Scholar 

  • Rodríguez Couto S & Sanromán M A, 2006, Application of solid-state fermentation to food industry — A review, Journal of Food Engineering, 76(33), 291–302

    Google Scholar 

  • Roussos S, Raimbault M, Prebois J-P & Lonsane BK, 1993, Zymotis, a large scale solid-state fermenter, Applied Biochemistry and Biotechnology, 42(1), 37–52.

    Article  CAS  Google Scholar 

  • Saucedo-Castaneda G, Gutiérrez-Rojas M, Bacquet G, Raimbault M & Viniegra-González , 1990, Hest transfer simulation in solid substrate fermentation, Biotechnology and Bioengineering, 35(5), 802–808.

    Article  CAS  Google Scholar 

  • Saucedo-Castañeda G, Lonsane BK, Navarro JM & Roussos S, 1992, Applied Microbiology and Biotechnology, 37, 580–582.

    Article  Google Scholar 

  • Schutyser MAI, 2003, Mixed solid-state fermentation: numerical modelling and experimental validation.

    Google Scholar 

  • Schutyser MAI, Weber FJ, Briels WJ, Rinzema A & Boom RM, 2002, Heat and Water Transfer in a Rotating Drum Containing Solid Substrate Particles, Biotechnology and Bioengineering, 82(5), 552–563.

    Article  CAS  Google Scholar 

  • Solis-Pereira S, Favela-Torres E, Viniegra-González G & Gutierrez-Rojas M, 1993, Effect of different carbon sources on the synthesis of pectinases in Aspergillus niger in submerged and solid-state fermentation, Applied Microbiology and Biotechnology, 39,36–41.

    CAS  Google Scholar 

  • Suryanarayan S, 2001, In: Proceeding of the International Conference on New Horizons in Biotechnology, Trivandrum, April 18-21.

    Google Scholar 

  • Suryanarayan S, 2003, Current industrial practice in solid state fermentations for secondary metabolite production: the Biocon India experience, Biochemical Engineering Journal, 13, 189–195.

    Article  CAS  Google Scholar 

  • Suryanarayan S & Mazumdar K,1999, Solid-state fermentation, World Patent no. WO 99/57239.

    Google Scholar 

  • Viniegra-Gonzáles G, Favela-Torres E, Aguilar CN, Rómero-Gomez S, Díaz-Godínez & Augur C, 2003, Advantages of fungal enzyme production in solid state over liquid fermentation systems, Biochemical Engineering Journal, 13, 157–167.

    Article  Google Scholar 

  • Xue M, Liu D, Zhang H, Qi H & Lei Z, 1992, A pilot process of solid state fermentation from sugar beet pulp for the production of microbial protein, Journal of Fermentation and Bioengineering, 73(3), 203–205.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Sermanni, G.G., Tiso, N. (2008). Aspects of Design of Bioreactors in SSF. In: Pandey, A., Soccol, C.R., Larroche, C. (eds) Current Developments in Solid-state Fermentation. Springer, New York, NY. https://doi.org/10.1007/978-0-387-75213-6_6

Download citation

Publish with us

Policies and ethics