Skip to main content

Water Relations in Solid-state Fermentation

  • Chapter
  • 5356 Accesses

Abstract

For the majority of filamentous fungal species, solid-state media are the natural life media. Growth can occur on the surface, or within the whole substrate, depending on the porosity. Industrial solid-state fermentations have been developed largely in traditional food industries such as cheese, Oriental fermentations, fermented vegetables, meat, and other products, and in biotechnological industries such as antibiotics and enzymes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams HL & Thomas CR, 1988, The use of image analysis for morphological measurements on filamentous microorganisms, Biotechnology and Bioengineering, 32,707–712.

    Article  CAS  Google Scholar 

  • Adebayo AA & Harris RF, 1971, Fungal growth responses to osmotic as compared to matrix water potential, Soil Science Society of America Journal, 35, 465–469.

    Google Scholar 

  • Aunia R, Ortiz I, Villegas E & Revah S, 1995, Influence of growth and high mould concentration on the pressure drop in solid-state fermentations, Process Biochemistry, 8,751–756.

    Google Scholar 

  • Bajracharya R & Mudgett R, 1985, Effects of controlled gas environments in solid-substrate fermentations of rice, Biotechnology and Bioengineering, 22, 2219–2235.

    Article  Google Scholar 

  • Barstow LM, Dale BE & Tengerdy RP, 1988, Evaporative temperature and moisture control in solid substrate fermentation, Biotechnological Techniques, 2, 237–242.

    Article  Google Scholar 

  • Bartnicki-Garcia S, 1973, Fundamental aspects of hyphal morphogenesis, In-Microbial Differentiation, JM Ashworth & Smith JE (eds), Cambridge University Press, London, pp 245–267.

    Google Scholar 

  • Bellon-Maurel V, Orliac O & Christen P, 2003, Sensors in solid state fermentation: a review, Process Biochemistry, 38, 881–896.

    Article  CAS  Google Scholar 

  • Ben-Amotz A & Avron M, 1978, On the mechanism of osmoregulation in Dunaliella, In-Developments in Halophic Microorganisms, Vol. 1, Energetics and Structure of Halophic Microorganisms, SR Caplan & M Ginzburg (eds), Elsevier-North-Holland Press, Amsterdam, pp 529–536.

    Google Scholar 

  • Ben-Amotz A & Avron M, 1981, Glycerol and á-carotena metabolism in the halotolerant alga Dunaliella: a model system for biosolar energy conversion, Trends in Biochemical Sciences, 297–299.

    Google Scholar 

  • Benjamin S & Pandey A, 1998, Mixed-solid substrate fermentation. A novel process for enhanced lipase production by Candida rugosa, Acta biotechnologica, 18, 315–324.

    CAS  Google Scholar 

  • Beuchat LR, 1983, Influence of water activity on growth, metabolic activities and survival of yeast and moulds, Journal of Food Protection, 46, 135–141.

    Google Scholar 

  • Biquet B & Guilbert S, 1986, Diffusivités relatives de l’eau dans les aliments modèles à humidité intermédiaire, Lebensmittel Wissenschaft Technologie, 19, 208–214.

    CAS  Google Scholar 

  • Bouanda R, 1983, Contribution à l’étude de l’activité enzymatique en milieu faiblement hydraté: influence de la mobilité du substrat, Thèse de doctorat,Université de Bourgogne, Dijon, France.

    Google Scholar 

  • Bramorski A, Christen P, Ramirez M, Soccol CR & Revah S, 1998, Production of volatile compounds by the edible fungus Rhizopus oryzae during solid state cultivation on tropical agro-industrial substrates, Biotechnology Letters, 20(4), 359–362.

    Article  CAS  Google Scholar 

  • Bruin S & Luyben KCA, 1980, A review of recent developments, In-Advances in Drying, Vol 1, A Majumdar (ed), Hemisphere, London, pp 155–215.

    Google Scholar 

  • Bull AT & Trinci APJ, 1977, The physiology and metabolic control of fungal growth, In-Advances in Microbial Physilogy, AH Rose & Tempest DW (eds), Academic Press, New York, pp 1–84.

    Google Scholar 

  • Chahal DS, 1983, Growth characteristics of microorganisms in solid state fermentation for upgrading of protein values of lignocelluloses and cellulases production, American Chemical Society Symposium Series, 207, 421–442.

    CAS  Google Scholar 

  • Charlang GW & Horowitz NH, 1971, Germination and growth of Neurospora at low water activities, Proceedings of The National Academy of Sciences, 68, 260–262.

    Article  CAS  Google Scholar 

  • Charlang GW & Horowitz NH, 1974, Membrane permeability and the loss of germination factor from Neurospora crassa at low water activity, Journal of Bacteriology, 117, 261–264.

    CAS  Google Scholar 

  • Corona A, Saez D & Agosin E, 2005, Effect of water activity on gibberellic acid production by Gibberella fujikuroi under solid-state fermentation conditions, Process Biochemistry, 40,2655–2658.

    Article  CAS  Google Scholar 

  • Crowe JH, Crowe LM & Deamer DW, 1982, Hydration dependent phase changes in biological membrane, In Biophysics of Water, F. Franks & S. Mathias (eds), Wiley, Chichester, pp. 295–299.

    Google Scholar 

  • Cudd A & Steptonkus PL, 1987, Osmotic dehydration-induced lamellar to hexagonal-II phase transitions in liposomes of rye plasma membrane lipids, Cryo. 87: 24th Annual meeting, Society for Cryobiology, Edmonton, Canada, pp 33–35.

    Google Scholar 

  • De Loecker R, Penninck F & Keremans R, 1978, Osmotic effects of rapid dilution of cryoprotectants: I. Effect of human erythrocyte swelling, Cryoletters, 8, 131–136.

    Google Scholar 

  • De Reu JC, Zwietening MH, Rombouts FM & Nout MJR, 1993, Temperature control in solid substrate fermentation through discontinuous rotation, Applied Microbiology and Biotechnology, 40, 261–265.

    Google Scholar 

  • Diaz-Godinez G, Soriano-Santos J, Augur C & Viniegra-Gonzalez G, 2001, Exopectinase produced by Aspergillus niger in solid-state and submerged fermentation: a comparative study, Journal of Industrial Microbiology and Biotechnology, 26, 271–275.

    Article  CAS  Google Scholar 

  • Dickinson S & Bottomley R, 1980, Germination and growth of Alternaria and Cladosporium in relation to their activity in the phylophane, Transactions of The Britisch Mycological Society, 74, 309–319.

    Google Scholar 

  • Dorta B, Ertola RJ & Areas J, 1996, Characterization of growth and sporulation of Metarhizium anisoplae solid-substrate fermentation, Enzyme and Microbial Technology, 19,434–439.

    Article  CAS  Google Scholar 

  • Dorta B, Areas J, 1998, Sporulation of Metarhizium anisoplae in solid-state fermentation with forced aeration, Enzyme and Microbial Technology, 23, 501–505.

    Article  CAS  Google Scholar 

  • Durand A, Arnoux P, Teilhard de Chardin O, Chereau D, Boquien CY & Larios de Anda G, 1983, Protein enrichment of sugar-beet pulp by solid state fermentation, In-Production and Feeding of Single-Cell Protein, MP Ferranti & A Fietcher (eds), Applied Science Publishers, London and New York, pp 120–123.

    Google Scholar 

  • Durand A & Chéreau D, 1988, A new pilot reactor for solid-state fermentation: application to the protein enrichment of sugar beet pulp, Biotechnology and Bioengineering, 31, 476–486.

    Article  CAS  Google Scholar 

  • Durand A, Renaud R, Almanza S, Maratray J, Diez M & Desgranges C, 1993, Solid state fermentation reactors: from lab scale to pilot plant, Biotechnology Advances, 11, 597–597.

    Article  Google Scholar 

  • Engel E, 1995, Etude de l’influence de l’activité de l’eau sur la croissance, la sporulation et la production d’arômes de Ceratocystis fimbriata cultivée en milieu solide, Mémoire d’Ingénieur ENSBANA, Université de Bourgogne, France.

    Google Scholar 

  • Feng KC, Liu BL & Tzeng YM, 2000, Verticillium lecanii spore production in solid-state and liquid-state fermentations, Bioprocess Engineering, 23, 25–29.

    Article  CAS  Google Scholar 

  • Ferret E, Simeon JH, Molin P, Jorquera H, Acuna G & Giral R, 1999, Macroscopic growth of filamentous fungi on solid substrate explained by a microscopic approach, Biotechnology and Bioengineering, 65, 512–522.

    Article  CAS  Google Scholar 

  • Ferret E, Molin P, Acuna G, Perez-Correa R & Gervais P, 2004, In-Steric approach for growth kinetics Gibberella fujikuroi on 3D solide substrate, CAB9 9th International Symposium On Computer Applications in Biotechnology, Pons NM & Van Impe JFM (eds), Elsevier Limited, Nancy, 321–326.

    Google Scholar 

  • Fèvre M, 1979, Digitonin solubilization and protease stimulation of b-glucan synthetases of Saprolegnia, Zeitschrift fur pflanzenphysiologie, 95, 129–140.

    Google Scholar 

  • Fèvre M & Rougier M, 1982, Autoradiographic study of hyphal cell wall synthesis of Saprolegnia, Archives of Microbiology, 131, 212–215.

    Google Scholar 

  • Fisher LR, & Israelachvili JN, 1979, Direct experimental verification of the Kelvin equation for capillary condensation, Nature, 277, 548–549.

    Article  CAS  Google Scholar 

  • Flory PJ, 1953, Statistical thermodynaniics of polymer solutions, In-Principles of Polymer Chemistry, PJ. Flory (ed), Cornell University Press, New York, pp 495–540.

    Google Scholar 

  • Franks F, 1995, Water and aqueous solutions: Recent advances, In-Water Properties of Foods, D Simatos & JL Multon (eds), Martinus Nijhoff, The Netherlands, pp 1–23.

    Google Scholar 

  • Gervais P, Bazelin C & Voilley A, 1986, Patterns of aeration in a solid substrate fermentor through the study of the residence time distribution of a volatile tracer, Biotechnology and Bioengineering, 28, 1540–1543.

    Article  CAS  Google Scholar 

  • Gervais P, Belin JM, Grajek W & Sarrette M, 1988a, Influence of water activity on the aroma production by Trichoderma viride growing on solid substrate, Journal of Fermentation and Bioengineering, 66, 403–407.

    CAS  Google Scholar 

  • Gervais P, Bensoussan M & Grajek W, 1988b, Water activity and water content: comparative effects on the growth of Pénicillium roqueforti on solid substrate, Applied Microbiology and Biotechnology, 27, 389–392.

    Article  CAS  Google Scholar 

  • Gervais P, Fasquel JP & Molin P, 1988c, Water relations of fungal spore germination, Applied Microbiology and Biotechnology, 29, 586–592.

    Article  CAS  Google Scholar 

  • Gervais P, Molin P, Grajek W & Bensoussan M, 1988d, Influence of water activity of a solid substrate on the growth rate and sporogenesis of filamentous fungi, Biotechnology and Bioengineering, 31, 457–463.

    Article  CAS  Google Scholar 

  • Gervais P, 1989, New sensor allowing continuous water activity measurements of submerged or solid-substrate fermentations, Biotechnology and Bio engineering, 33, 266–271.

    Article  CAS  Google Scholar 

  • Gervais P, 1990, Water activity: a fundamental parameter of aroma production by microorganisms, Applied Microbiology and Biotechnology, 33, 72–75.

    Article  CAS  Google Scholar 

  • Gervais P & Sarrette M, 1990, Influence of age of mycelium and water activity of the medium on aroma production by Trichoderma viride grown on solid substrate, Journal of Fermentation and Bio engineering, 69, 46–50.

    Article  CAS  Google Scholar 

  • Gervais P & Bensoussan M, 1994, Solid-State Fermentations of the Genus Aspergillus, In-Aspergillus, J.E. Smith (ed), Plenum Press, pp 101–140.

    Google Scholar 

  • Gervais P, Maréchal PA & Molin P, 1996, Water relations of solid-state fermentation, Journal of Scientific & Industrial Research, 55, 343–357

    CAS  Google Scholar 

  • Gervais P, Molin P, Marechal PA & Herail-Foussereau C, 1996b, Thermodynamics of cell osmoregulation: passive mechanisms, Journal of Biological Physics, 22, 73–86.

    Article  CAS  Google Scholar 

  • Gervais P, Abadie C & Molin P, 1999, Fungal turgor pressure is directly involved in the hyphal growth rate, Microbiological Research, 154, 81–87.

    Google Scholar 

  • Ghildyal NP, Gowthaman MK, Raghava Rao KSMS & Karanth NG, 1994, Interaction of transport resistances with biochemical reaction in packed-bed solid-state fermentors: effects of temperature gradients, Enzyme and Microbial Technology, 16, 253–257.

    Article  CAS  Google Scholar 

  • Gilles R, 1975, Mechanism of ion and osmoregulation, In-Marine Ecology, O Kenne (ed), Wiley-Interscience, England, pp 259–347.

    Google Scholar 

  • Gonzalez-Bianco P, Saucedo-Castaneda G & Viniegra-Gonzalez G, 1990, Protein enrichment of sugar cane by-products using solid state cultures of Aspergillus terreus, Journal of Fermentation and Bioengineering, 70, 351–354.

    Article  Google Scholar 

  • Gottlieb D, 1978, In The Germination of Fungus Spores, D Gottlieb (ed), Meadowfield Press, Durham, pp 1–11.

    Google Scholar 

  • Goldberg M, Parvaresh F, Thomas D & Legoy MD, 1988, Enzymatic ester synthesis with continuous measurement of water activity, Biochimica et Biophysica Acta, 957, 359–362

    CAS  Google Scholar 

  • Grajek W, 1987, Cooling aspects of solid state fermentation and thermophilic fungi, Journal of Fermentation Technology, 66, 675–679.

    Article  Google Scholar 

  • Grajek W & Gervais P, 1987, Effect of the sugar-beet pulp water activity on the solid state culture of Trichoderma viride TS, Applied Microbiology and Biotechnology, 26, 537–541.

    CAS  Google Scholar 

  • Grajek W & Gervais P, 1987b, Influence of water activity on the enzyme biosynthesis and enzyme activities produced by Trichoderma viride TS in solid-state fermentation, Enzyme and Microbial Technology, 9, 658–662.

    Article  CAS  Google Scholar 

  • Griffin DM, 1972. General ecology of soil fungi, In-Ecology of Soil Fungi, University Press, London, pp 2–67.

    Google Scholar 

  • Griffin DM & Luard EJ, 1979, Water stress and microbial ecology, In-Strategies of Microbial Life in Extreme Environments, M Shilo (ed), Verlag Chemie, Weinheim, pp 49–63.

    Google Scholar 

  • Griffin DM, 1981, Water and microbial stress, Advances in Microbiology and Ecology, 5,91–136

    CAS  Google Scholar 

  • Grigelmo-Miguel N & Martin-Belloso O, 1999, Characterization of dietary fiber from orange juice extraction, Food Research International, 31, 355–361.

    Article  Google Scholar 

  • Guggenheim EA, 1967, Thermodynamics: An advanced treatment for chemists and physicists, North-Holland, Amsterdam, 5th Ed.

    Google Scholar 

  • Hamidi-Estafani Z, Shojaosadati SA & Rinzema A, 2004, Modelling of simultaneous effect of moisture and temperature on A. niger growth in solid-state fermentation, Biochemical Engineering Journal, 21, 265–272.

    Article  CAS  Google Scholar 

  • Howard RJ, 1981, Ultrastructural analysis of hyphal tip cell growth in fungi Spitzenkörper, cytoskeleton and endomembranes after freeze-substitution, Journal of Cell Science, 48,89–103.

    CAS  Google Scholar 

  • Hellebust JA, 1976, Osmoregulation, Annual Review of Plant Physiology, 27, 485–505.

    Article  CAS  Google Scholar 

  • Hesseltine CW, 1972, Solid state fermentation, Part 1, Biotechnology and Bioengineering, 14,517–532.

    Article  CAS  Google Scholar 

  • Huang SY, Wei CH, Malancy GW & Tanner RD, 1985, Kinetic responses of the koji solid state fermentation process, In-Topics in Enzyme and Fermentation: Biotechnology, A. Wiseman (ed), John Wiley & Sons, New York, pp 88–108.

    Google Scholar 

  • Inch JMP & Trinci APJ, 1987, Effects of water activity on growth and sporulation of Paecilomyces farinosus in liquid and solid media, Journal of General Microbiology, 133,247–252.

    CAS  Google Scholar 

  • Jakobsen M, 1985, Effect of a w on growth and survival of bacilliaceae, In-Properties of Water in Foods, D Simatos & Multon JL (eds), Martinus Nijhoff, Dordrecht, pp 259–272.

    Google Scholar 

  • Kaminky SGW, Garril JA & Heath BI, 1992, The relation between turgor and tip growth in Saprolegnia ferax: turgor is necessary but not sufficient to explain apical extension rates, Experimental Mycology, 16, 64–75.

    Article  Google Scholar 

  • Karel M, 1976, Technology and application of new intermediate moisture foods, In-Intermediate Moisture Foods, R Davies, GG Birch & Parker KJ (eds), Applied Science Publishers, London, pp 1321–1354.

    Google Scholar 

  • Krauss H, 1974, Osmoregulation in Ochromonas, In-Membrane Transport in Plants, U Zimmermann and Dainty J (eds), Springer, Berlin, pp 90–94.

    Google Scholar 

  • Kedem O & Katchalsky A, 1958, Thermodynamic analysis of the permeability of biological membranes to non-electrolytes, Biochimica et Biophysica Acta, 27, 229–246.

    Article  CAS  Google Scholar 

  • Kuntz ID, 1971, Hydration of macromolecules: hydration of polypeptides, polypeptides conformation in frozen solutions, Journal of the American Chemical Society, 92, 514–518.

    Article  Google Scholar 

  • Labuza TP, Acott K & Tatini SR, 1976, Water activity determination: a collaborative study of different methods. Journal of Food Science, 41, 910–917.

    Article  CAS  Google Scholar 

  • Lapp MS & Skoropad WP, 1976, A mathematical model of conidian germination and appressorial formation for Colletotrichum graminicola, Canadian Journal of Botany, 54,2239–2242.

    Google Scholar 

  • Larroche C, Besson I & Gros JB, 1999, High pyrazine production by Bacillus subtilis in solid substrate fermentation on ground soybeans, Process Biochemistry, 34, 667–674.

    Article  CAS  Google Scholar 

  • Latrasse A, Degorce-Dumas JR & Leveau JY, 1985, Production d’arômes par les microorganismes, Science des Aliments, 5, 1–26.

    CAS  Google Scholar 

  • Lekanda JS & Perez-Correa JR, 2004, Energy and water balances using kinetic modeling in a pilot-scale SSF bioreactor, Process Biochemistry, 39, 1793–1802.

    Article  CAS  Google Scholar 

  • Le Meste M & Voilley A, 1988, Influence of hydration on rotational diffusivity of solutes in model systems, Journal of Physical Chemistry, 92, 1612–1616.

    Article  Google Scholar 

  • Levonen-Mufloz E & Bone DH, 1985, Effect of different gas environments on bench-scale solid state fermentation of oat straw by white-rot fungi, Biotechnology and Bioengineering, 27, 382–387.

    Article  Google Scholar 

  • Lindenfelser LA & Ciegler A, 1975, Solid-substrate fermentor for ochratoxin A production, Applied Microbiology, 29, 323–327.

    CAS  Google Scholar 

  • Liu BL & Tzeng YM, 1999, Water content and water activity for the production of cyclodepsipeptides in solid-state fermentation by Metarhizium anisoplae, Biotechnology Letters, 21, 657–661.

    Article  CAS  Google Scholar 

  • Lockhart JA, 1965, An analysis of irreversible plant cell elongation, Journal ofTheoretical Biology, 8, 264–275.

    Article  CAS  Google Scholar 

  • Lonsane BK, Ghildyal NP, Butiatman S & Ramakrishna SV, 1985, Engineering aspects of solid state fermentation, Enzyme and Microbial Technology, 7, 258–265.

    Article  CAS  Google Scholar 

  • Luard EJ, 1982, Growth and accumulation of solutes by Phytophthora cinnamomi and other lower fungi in response to changes in external osmotic potential, Journal of General Microbiology, 128, 2583–2590.

    CAS  Google Scholar 

  • MacDonald JD & Duniway JM, 1978, Influence of the matrix and osmotic components of water potential on zoospore discharge in Phytophthora, Phytopathology, 68, 751–757.

    Google Scholar 

  • Magnan N & Lacey J, 1984, Effect of temperature and pH on water relations of field and storage fungi, Transactions of The Britisch Mycological Society, 82, 71–81.

    Google Scholar 

  • Maniette F, Cambert M, Franconi JM & Marchai P, 1999, Etude par imagerie RMN des transferts d’eau lors de l’égouttage des caillés de fromagerie, In-AGORAL 99 Onzièmes rencontres scientifiques et technologiques des industries alimentaires, Tec & Doc (ed), Nantes, 405–410.

    Google Scholar 

  • Martin JF & Nicolas G, 1970, Physiology of spore germination in Pénicillium notatum and Trichoderma lignorum, Transactions of The Britisch Mycological Society, 55, 141–148.

    Google Scholar 

  • Masangkay RF, Paulitz TC, Hallett SG & Watson AK, 2000 Solid substrate production of Alternaria alternata f sp. phenoclease conidia, Biocontrol Science and Technology, 10,399–409.

    Google Scholar 

  • Mauro A, 1957, Nature of solvent transfer in osmosis, Science, 26, 252–253.

    Article  Google Scholar 

  • Mazur P, Rail WF & Rigopoulos N, 1981, Relative contributions of the fraction of unfrozen water and of salt concentration of the survival of slowly frozen human erythrocytes, Biophysical Journal, 36, 653–675.

    CAS  Google Scholar 

  • Medeiros ABP, Pandey A, Freitas RJS, Christen P & Soccol CR, 2000, Optimization of the production of aroma compounds by Kluyveromyces marxianus in solid-state fermentation using factorial design and response surface methodology, Biochemical Engineering Journal, 6, 33–39.

    Article  CAS  Google Scholar 

  • Mitchell D, Von Meien OF, Krieger N & Dalsenter FDH, 2004, A review of recent developments in modelling of microbial growth kinetics and intraparticle phenomena in solid-state fermentation, Biochemical Engineering Journal, 17, 15–26.

    Article  CAS  Google Scholar 

  • Mohsenin N, 1984, Electromagnetic radiation properties of food and agricultural products, Gordon & Breach publishers, New-York.

    Google Scholar 

  • Molin P, Gervais P, Lemière JP & Davet T, 1992, Direction of hyphal growth: a relevant parameter of the development of filamentous fungi, Research in Microbiology, 143, 777–784.

    Article  CAS  Google Scholar 

  • Money NP, Harold FM, 1993, Two water molds can grow without measurable turgor pressure, Planta, 190, 426–430.

    Article  Google Scholar 

  • Money NP, 1997, Wishful thinking of turgor revisited: the mechanics of fungal growth, Fungal Genetics and Biology, 21, 173–187.

    Article  Google Scholar 

  • Montiel-Gonzalez AM, Viniegra-Gonzalez G, Fernandez FJ & Loera O,2004, Effect of water activity on invertase production in solid state fermentation by improved diploid strains of Aspergillus niger, Process Biochemistry, 39, 2085–2090.

    Article  CAS  Google Scholar 

  • Moo-Young M, Chahal DS, Swan JE & Robinson CW, 1977, SCP production by Chaetomium cellulolyticum: A new cellulolytic fungus, Biotechnology and Bioengineering, 19, 527–538.

    Article  CAS  Google Scholar 

  • Moo-Young M, Moriera A.R & Tengerdy RP, 1983, Principles of solid state fermentation, In-The Filamentous Fungi, Vol. 4, Fungal Technology, JE Smith, DR Berry, & B Kristiansen (eds), Edward Arnold Publishers, London, pp 117–144.

    Google Scholar 

  • Mossel DDA, 1975, Water and microorganisms in foods: a synthesis, In-Water Relation of Foods, RB Duckworth (ed), Academic Press, New York, pp 347–361.

    Google Scholar 

  • Nagel FJ, Van As H, Tramper J & Rinzema A, 2002, Water and glucose gradients in the substrate measured with NMR imaging during solid state fermentation with Aspergillus orizae, Biotechnology and Bioenginering, 79, 654–663.

    Google Scholar 

  • Narayanan RM & Vu KT, 2000, Microwave measurement of moisture content in powdered foods, Journal of food Process Preservation, 24, 39–56

    Article  Google Scholar 

  • Nishio N, Tai K & Nagai S, 1979, Hydrolase production by Aspergillus niger in solid-state cultivation, European Journal of Applied Microbiology and Biotechnology, 8, 263–270.

    Article  CAS  Google Scholar 

  • Northolt MD, Van Egmont HP & Paulsch WE, 1984, Ochratoxine: A production by some fungal species in relation to a w and temperature, Journal of Food Protection, 42, 485–490.

    Google Scholar 

  • Oostra J, Tramper J & Rinzema A, 2000, Model-based bioreactor selection for large-scale solid-state cultivation of Coniothyrium minitans spores on oats, Enzyme and Microbial Technology, 27, 652–663.

    Article  CAS  Google Scholar 

  • Pandey A, 2003, Solide-State fermentation, Biochemical Engineering Journal, 13, 81–84.

    Article  CAS  Google Scholar 

  • Prosser JI, 1990, Comparison of tip growth in prokaryotic and eukaryotic filamentous microorganisms, In-Tip growth in plants and fungal cells, Heath IB (ed), Academic Press, San Diego, pp 233–258.

    Google Scholar 

  • Quinn PY, 1985, A lipid phase separation model for low-temperature damage to biological membranes, Cryobiology, 22, 128–146.

    Article  CAS  Google Scholar 

  • Raghavarao KSMS, Ranganathan TV & Karanth NG, 2003, Some engineering aspects of solid-state fermentation, Biochemical Engineering Journal, 13, 127–135.

    Article  CAS  Google Scholar 

  • Raimbault M & Alazard D, 1980, Culture method to study fungal growth in solid fermentation, European Journal of Applied Microbiology, 9, 199–209.

    Article  CAS  Google Scholar 

  • Raimbault M, 1981, In-Fermentation en milieu solide-Croissance de champignons filamenteux sur substrat amylacé (O.R.S.T.O.M., Paris), pp 1–291.

    Google Scholar 

  • Ramesh MV & Lonsane BK, 1990, Critical importane of moisture content of the medium in alpha-amylase production by Bacillus licheniformis M27 in a solid-state fermentation system, Applied Microbiology and Biotechnology, 3, 201–205.

    Google Scholar 

  • Richard-Molard D, Bizot H & Multon JL, 1982, Water activity, essential factor of the microbiological evolution of foods, Science des Aliments, 2, 3–17.

    Google Scholar 

  • Ridder ER, Nokes SE & Knutson BL, 1999, Optimization of solid-state fermentation parameters for the production of xylanase by Trichoderma longibrachiatum on wheat bran in a forced aeration system, Transactions of the ASAE, 42, 1785–1790.

    CAS  Google Scholar 

  • Robertson NF, 1958, Observation of the effect of water on the hyphal apices of Fusarium oxysporum, Annals of Botany, 22, 159–173.

    Google Scholar 

  • Robertson NF & Rizvi SRH, 1968, Some observations on the water relations of the phyphae of Neurospora crassa, Annals of Botany, 32, 279–291.

    Google Scholar 

  • Robinson PM & Griffin PJ, 1977, Effect of restricted aeration on chemotropism, morphogenesis and polarity of lateral branch induction in Geotrichum candidum, Transactions of The Britisch Mycological Society, 68, 311–314.

    Article  Google Scholar 

  • Sangsurasak P & Mitchell DA, 1998, Validation of a model describing two-dimensional heat transfer during solid-state fermentation in packed bed bioreactors, Biotechnology and Bioengineering, 60, 739–748.

    Article  CAS  Google Scholar 

  • Sato K, Nagatami M & Sato S, 1982, A method of supplying moisture to the medium in a solid state culture with forced aeration, Journal of Fermentation Technology, 60, 607–610.

    CAS  Google Scholar 

  • Saucedo-Castaneda G, Gutierrez-Rojas M, Bacquet G, Raimbault M & Viniegra-Gonzales G, 1990, Heat transfer simulation in solid substrate fermentation, Biotechnology and Bioengineering, 35, 802–808.

    Article  CAS  Google Scholar 

  • Schwan HP, ai]1965, Electrical properties of bound water, Annals of New York Academy of Sciences, 125: 344–354.

    Google Scholar 

  • Scott WJ, 1953, Water relations of Staphylococcus aureus at 30°C, Australian Journal of Biological Sciences, 6, 549–564.

    CAS  Google Scholar 

  • Scott WJ, 1957, Water relation of food spoilage microorganisms, Advances in Food Research,7, 83–127.

    CAS  Google Scholar 

  • Sheridan JJ & Sheeman PJ, 1980, Development of a technique for the germination of the fungal spores, Irish Journal of Agricultural Research, 19, 155–159.

    Google Scholar 

  • Simatos D & Karel M, 1988, Characterization of the condition of water in foods: physico-chemical aspects, In-Food Preservation by Moisture Control, CC Seow (ed), Elsevier Applied Science, London, pp 1–41.

    Google Scholar 

  • Smith J., 1978, A sexual sporulation in filamentous fungi, In-The Filamentous Fungi, JE Smith & Berry DR (eds), Edward Arnold, London, pp 214–235.

    Google Scholar 

  • Snow D, 1949, The germination of mould spores at controlled humidities, Annals of Applied Biology, 36, 1–13.

    Article  CAS  Google Scholar 

  • Steudle E, Tyerman SD & Wendler S, 1983, Water relations of plant cells, In-Effects of Stress on Photosynthesis, R Marcelle, H Clijster & M Van Poucke (eds), Martinus Nijhoff, The Hague, pp 95–109.

    Google Scholar 

  • Suutari M, Liukkonen K & Laakso S, 1990, Temperature adaptation in yeasts: the role of fatty acids, Journal of General Microbiology, 136, 1469–1474.

    CAS  Google Scholar 

  • Tabak HH & Cooke WM, 1968, The effects of gaseous environment on the growth and metabolism of fungi, Botanical Review, 34, 126–252.

    Article  CAS  Google Scholar 

  • Tallu B, 1986, Aroma production, Postgraduate in Food Sciences, University of Clermont-Ferrand, France.

    Google Scholar 

  • Taragano VM & Pilosof AMR, 1999, Application of Doehlert designs for water activity, pH, and fermentation time optimization for Aspergillus niger pectinolytic activities production in solid-state and submerged fermentation, Enzyme and Microbial Technology, 25, 411–419.

    Article  CAS  Google Scholar 

  • Todd WG, 1972, Water deficits and enzymatic activity, In-Plant Response and Control of Water Balance, Vol. 3: Water deficits and plant growth, T.T. Kozlowski (ed), Academic Press, New York, pp 117–216.

    Google Scholar 

  • Todd GW, Water deficits and enzymatic activity, Water Deficits and Plant Growth, 3, 177–216.

    Google Scholar 

  • Trinci APJ & Bandury GH, 1967, A study of the growth of the tall conidiophores of Aspergillus giganteus, Transactions of The Britisch Mycological Society, 50, 525–539.

    Google Scholar 

  • Trinci APJ, 1969, A kinetic study of the growth of Aspergillus nidulans and other fungi, Journal of General Microbiology, 57, 11–24.

    CAS  Google Scholar 

  • Trinci APJ, 1971, Influence of the peripheral growth zone on the radial growth rate of fungal colonies, Journal of General Microbiology, 67, 325–334.

    Google Scholar 

  • Trinci APJ & Collinge A, 1973, Influence of L-sorbose on the growth and morphology of Neurospora crassa, Journal of General Microbiology, 78, 179–192.

    CAS  Google Scholar 

  • Trinci APJ, 1974, A study of the kinetics of hyphal extension and branch initiation of fungal mycelia, Journal of General Microbiology, 81, 225–236.

    CAS  Google Scholar 

  • Trinci APJ, 1978, Wall and hyphal growth, Science Progress, 65, 75–99.

    CAS  Google Scholar 

  • Troller JA, 1980, Influence of water activity on microorganisms in foods, Food Technology, 5, 76–82.

    Google Scholar 

  • Viesturs UE, Aspite AF, Laukevics JJ, Ose VP, Bekers, MJ, 1981, Solid state fermentation of wheat straw with Chaetomium cellulolyticum and Trichoderma lignorum, Biotechnology and Bioengineering Symposium, 11, 359–369.

    CAS  Google Scholar 

  • Von Meien OF, Luz LFL, Mitchell DA, Perez-Correa JR, Agosin E, Fernandez-Fernandez M & Areas JA, 2004, Control strategies for intermittently mixed, forcefully aerated solid-state fermentation bioreactors based on the analysis of a distributed parameter model, Chemical Engineering Science, 59, 4493–4504.

    Article  CAS  Google Scholar 

  • Waggoner PE & Pariinge JT, 1975, Slowing of spore germination with changes between moderately warm and cold temperatures, Phytopathology, 65, 551–553.

    Google Scholar 

  • Wessels JGH, 1993, Wall growth, protein excretion and morphogenesis in fungi, New Phytologist, 123, 397–413.

    Article  CAS  Google Scholar 

  • Wilson JM, Griffin DM, 1979, The effect of water potential on the growth of some soil basidiomycetes, Soil Biology & Biochemistry, 11, 211–212.

    Article  Google Scholar 

  • Wolfe J & Steponkus PL, 1983, Tension in the plasma membrane during osmotic contraction, Cryoletters, 4, 315–322.

    Google Scholar 

  • Xavier S & Karanth NG, 1992, A convenient method to measure water activity in solid state fermentation systems, Letters in Applied Microbiology, 15, 53–55.

    Article  CAS  Google Scholar 

  • Zimmermann U, 1978, Physics of turgor and osmoregulation, Annual Review of Plant Physiology, 29, 121–148.

    Article  CAS  Google Scholar 

  • Zhu GL, Boyer JS, 1991, Turgor and elongation growth in Chara cells, Plant Physiology, 96,38.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Gervais, P. (2008). Water Relations in Solid-state Fermentation. In: Pandey, A., Soccol, C.R., Larroche, C. (eds) Current Developments in Solid-state Fermentation. Springer, New York, NY. https://doi.org/10.1007/978-0-387-75213-6_5

Download citation

Publish with us

Policies and ethics